231 resultados para ionic alloys
Resumo:
Polyelectrolyte-functionalized ionic liquid (PFIL) and Prussian blue (PB) nanoparticles were used to fabricate ultrathin films on the ITO substrate through electrostatic layer-by-layer assembly method. Multilayer growth was examined by UV-vis spectroscopy and cyclic voltammetry. The resulting ITO/(PFIL/PB)n electrode showed two couples of well-defined redox peaks and good electrocatalytical activity towards the reduction of hydrogen peroxide.
Resumo:
We propose a simple but efficient, rapid, and quantitative ion-responsive micelle system based on counter-anion exchange of a surfactant with an imidazolium unit. The ion-exchange reaction results in the amphiphilic-to-hydrophobic transition of the imidazolium salt, leading to the destruction of the micelles, which has been successfully applied to control led release and emulsification.
Resumo:
In order to study the properties of Mg-Al-RE (AE) series alloys, the Mg-4Al-4RE-0.4Mn (RE= La, Ce/La mischmetal or Ce) alloys were developed. Their microstructures, tensile properties and corrosion behavior have been investigated. The results show that the phase compositions of Mg-4Al-4La-0.4Mn alloy consist of alpha-Mg and Al11La3 phases. While two binary Al-RE (RE = Ce/La) phases, Al11RE3 and Al2RE, are formed in Mg-4Al-4Ce/La-0.4Mn alloy, and Al11Ce3 and Al2Ce are formed in Mg-4Al-4Ce-0.4Mn alloy.
Resumo:
In this study, compositional dependence of age hardening characteristics and tensile properties were investigated for Mg-4Ho-xY-0.6Zr alloys (x = 0, 3 5, and 7 wt%). The result showed that with increasing Y content, the hardness of the alloys increased in the as-quenched and aged-peak conditions. Considerable age hardening response was recognized for the alloys. When the alloy containing 7% Y showed the most remarkable age hardening response at aging temperature of 250 degrees C.
Resumo:
The extraction behavior of thorium(IV) sulfate by primary amine N1923 in imidazolium-based ionic liquid (IL) namely 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim]PF6) was systematically studied in this paper. Results showed that the extraction behavior was quite different from that using conventional solvent as diluent. A reversed micellar solubilization extraction mechanism was proposed for the extraction of thorium(IV) by N1923/[C(8)mim]PF6 via slope analysis method and polarized optical microscopy (POM)/transmission electron microscopy (TEM) observation. The salt-out agent, Na2SO4, was demonstrated to prompt this extraction mechanism.
Resumo:
A facile route to the synthesis of LnF(3) nanocrystals has been accomplished in three ionic liquids (ILs) (OmimPF(6), OmimBF(4), and BmimPF(6)). The partial hydrolysis of PF6- and BF4- was utilized to introduce a new fluoride source. Uniform LnF(3) (Ln = La, Ce, Pr, Nd, Sm, Eu, Er), Tb3+-doped CeF3, and Eu3+-doped LaF3 nanocrystals could be obtained in a large scale, and the products were up to 0.15 g per 10 mL solvents. In the "all-in-one" systems, the ILs acted as solvents, reaction agents, and templates.
Resumo:
For (Ti1-xVx)(2)Ni (x = 0.05,0.1,0.15,0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging.
Resumo:
The microstructures and mechanical properties of cast Mg-Zn-Al-RE alloys with 4 wt.% RE and variable Zn and At contents were investigated. The results show that the alloys mainly consist of alpha-Mg, Al2REZn2, Al4RE and tau-Mg-32(Al,Zn)(49) phases. and a little amount of the beta-Mg17Al12 phase will also be formed with certain Zn and At contents. When increasing the Zn or At content, the distribution of the Al2REZn2 and Al4RE phases will be changed from cluster to dispersed, and the content of tau-Mg-32(Al,Zn)(49) phase increased gradually. The distribution of the Al2REZn2 and Al4RE phases, and the content of beta- or tau-phase are critical to the mechanical properties of Mg-Zn-Al-RE alloys.
Resumo:
The discovery of the icosahedral phase (i-phase) in rapidly quenched Ti1.6V0.4Ni1-xCox (x=0.02-01) alloys is described herein. The i-phase occurs in a similar amount relative to the coexisting beta Ti phase. The electron diffraction patterns show the distinct spot anisotropy, indicating that the i-phase is metastable. The electrochemical hydrogen storage performance of these five alloy electrodes are also reported herein. The hydrogen desorption of nonelectrochemical recombination in the cyclic voltammetric (CV) response exhibits the demand for electrocatalytic activity improvement.
Resumo:
Uniform rare earth phosphate (REPO4, RE = La-Tb) nanocrystals were successfully synthesized in a properly designed TBP/[Omim]Cl/H2O (tributylphosphate/1-octyl-3-methyl-imidazolium chloride/water) microemulsion system. The phosphoryl groups anchored the TBP molecules oil the surfaces of the nanocrystals, and this made the nanocrystals easily dispersed in some imidazolium-based ILs. LaPO4:Eu3+ and CePO4:Tb3+ nanocrystals capped with TBP showed bright red and green emission under UV excitation, with enhanced emission intensity and lifetimes compared with the uncapped ones.
Resumo:
Two new silica-based organic-inorganic hybrid materials (B104SGs and O104SGs) doped with a binary mixture of imidazolium and phosphonium ionic liquids have been synthesized and used as sorbents in batch system for rare earths (RE) separation. Imidazolium ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate (C(4)mim(+)PF(6)(-)) or 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)(-)) acted as porogens to prepare porous materials and additives to stabilize extractant within silica gel.
Resumo:
The Mg-12Gd-4Y-2Nd-0.3Zn-0.6Zr (wt.%) alloy was prepared by casting technology, and the structure, age hardening behavior and mechanical properties of the alloy have been investigated. The results demonstrated that the alloy was composed of alpha-Mg matrix, a lot of dispersed Mg24RE5 (RE = Gd/Y/Nd) and Mg5RE precipitates in the as-cast and the T6 state alloys. The alloy exhibited remarkable age hardening response and excellent mechanical properties from room temperature (RT) to 300 degrees C by optimum solid solution and aging conditions. The ultimate tensile strength.
Resumo:
The electrochemical deposition of magnesium was investigated in ethereal Grignard salt solution with tetraethylammonium bistrifluoro-methanesulfonimidate additive, using cyclic voltammetry, potentiostatic transients, and scanning electron microscope measurements. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of magnesium. From the analysis of the experimental current transients, it was shown that the magnesium deposition process was characterized as a three-dimensional nucleation. The deposited product obtained from potentiostatic reduction presented a generally uniform and dense film.
Resumo:
Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.
Resumo:
Ti45Zr35Ni13Pd7 alloys are prepared by melt spinning at different cooling rates (v). The phase structure and electrochemical hydrogen storage performance are investigated. When U is 10 m/s, the alloy consists of icosahedral quasicrystalline phase (I-phase), C14 Laves phase and a little amorphous phase. When v increases to 20 or 30 m/s, a mixed structure of I-phase and amorphous phase is formed. Maximum discharge capacity of alloy electrode decreases from 156 mAh/g (v = 10 m/s) to 139 mAh/g (v = 30 m/s) with increasing v. High-rate discharge ability at the discharge current density of 240 mA/g decreases monotonically from 61.2% (v = 10 m/s) to 56.8% (v = 30 m/s).