214 resultados para in situ precipitated silica
Resumo:
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.
Resumo:
Synchrotron small angle X-ray scattering was used to study the deformation mechanism of high-density polyethylene that was stretched beyond the natural draw ratio. New insight into the cooperative deformational behavior being mediated via slippage of micro-fibrils was gained. The scattering data confirm on the one hand the model proposed by Peterlin on the static structure of oriented polyethylene being composed of oriented fibrils, which are built by bundles of micro-fibrils. On the other hand it was found that deformation is mediated by the slippage of the micro-fibrils and not the slippage of the fibrils. In the micro-fibrils, the polymer chains are highly oriented both in the crystalline and in the amorphous regions. When stretching beyond the natural draw ratio mainly slippage of micro-fibrils past each other takes place. The thickness of the interlamellar amorphous layers increases only slightly. The coupling force between micro-fibrils increases during stretching due to inter-microfibrillar polymer segments being stretched taut thus increasingly impeding further sliding of the micro-fibrils leading finally to slippage of the fibrils.
Resumo:
A new-type Mg2Si composite was prepared with Mg-9Al-1Zn (AZ91) alloy and vermiculite as raw materials by melt infiltration method. The results show that the microstructure of composite consists of a large amount Of Mg2Si precipitates and a little amount of MgO embedded in alpha-Mg matrix. The Vickers hardness of the composite is obviously higher than that of matrix of AZ91 alloy. Moreover, the composite exhibits excellent compressive property. The ultimate compressive strength of the material is 290 MPa, the yield strength is 175 MPa, and the elongation is about 5%, which are higher than those of AZ91 alloy.
Resumo:
A new process of graft copolymerization of poly(vinyl chloride) (PVC) and polyethylene (PE) with other monomers was developed. The grafted chlorinated poly(vinyl chloride) (CPVC) and chlorinated polyethylene (CPE) were synthesized by in situ chlorinating graft copolymerization (ISCGC) and were characterized. Convincing evidence for grafting and the structure of graft copolymers was obtained using FT-IR, H-1-NMR, gel permeation chromatography (GPC), and the vulcanized curves. Their mechanical properties were also measured. The results show that the products have different molecular structure from those prepared by other conventional graft processes. Their graft chains are short, being highly branched and chlorinated. The graft copolymers have no crosslinking structure. The unique molecular structure will make the materials equipped with special properties.
Resumo:
A new straightforward strategy for synthesis of novel hyperbranched poly (ether amide)s from readily available monomers has been developed. By optimizing the reaction conditions, the AB(2)-type monomers were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to further polymerization in the presence (or absence) of an initiator, to prepare the hyperbranched polymer-bearing multihydroxyl end-groups. The influence of monomer, initiator, and solvent on polymerization and the molecular weight (MW) of the resultant polymers was studied thoroughly. The MALDI-TOF MS of the polymers indicated that the polymerization proceeded in the proposed way. Analyses of H-1 NMR and C-13 NMR spectra revealed the branched structures of the polymers obtained. These polymers exhibit high-moderate MWs and broad MW distributions determined by gel permeation chromatography (GPC) in combination with triple detectors, including refractive index, light scattering, and viscosity detectors. In addition, the examination of the solution behavior of these polymers showed that the values of intrinsic viscosity [eta] and the Mark-Houwink exponent a were remarkably lower compared with their linear analogs, because of their branched nature.
Resumo:
inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO3 and H4SiW12O40 aqueous solutions. Repeating the above synthesis process, Ag4SiW12O40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles.
Resumo:
Polyaniline (PANI) was cathodically synthesized at an evaporated gold electrode using an in situ electrogenerated intermediate as oxidant during reduction of the dissolved oxygen. The obtained PANI layer showed an electrochemical response similar to that synthesized by the conventionally anodic polymerization, and the average rate for the growth of PANI layer at polycrystalline gold electrode was 1.59 nm h(-1), while that at the Au (111) electrode was 4.93 nm h(-1). Based on these results, the thickness of the resulted layer can be easily controlled at molecular level for potential nanodevice applications. The obtained PANI layer showed morphology from an island-like nanostructure to an ultrathin film, depending on the crystal orientation of the electrode used.
Resumo:
The electrooxidation of bilirubin (BR) and bovine serum albumin (BSA) complexes was studied by in situ circular dichroism (CD) spectroelectrochemistry. The result showed that the mechanism of the whole electrooxidation process of this complex corresponded to electrochemical processes (EE mechanism) in aqueous solution. Some parameters of the process were obtained by double logarithm method, differential method and nonlinear regression method. In visible region, CD spectra of the two enantiomeric components of the complex and their fraction distribution against applied potentials were obtained by singular value decomposition least-square (SVDLS) method. Meanwhile, the distribution of the five components of secondary structure was also obtained by the same method in far-UV region. The peak potential gotten from EE mechanism corresponds to a turning point for the component transition, beyond which the whole reaction reaches a new equilibrium. Under applied positive potentials, the enantiomeric equilibrium between M and P form is broken and M form transfers to its enantiomer of P, while the fraction of alpha-helix increases and that improves the transition to P form.
Resumo:
Single-walled carbon nanotubes (SWNTs) were modified with polyethylene (PE) prepared by in situ Ziegler-Natta polymerization. Because of the catalyst pre-treated on the surface of the SWNTs, the ethylene was expected to polymerize there. Scanning electron microscopy images and solubility measurements showed that the surface of the SWNTs was covered with a PE layer, and a crosslink may have formed between the SWNTs and PE. When the SWNTs covered with a PE layer were mixed with commercialized PE by melt blending, the resulting composite had better mechanical properties than the composite from the SWNTs without a PE layer. The yield strength, the tensile strength and modulus, the strain at break, and the fracture energy of the modified-SWNT/PE composites were improved by 25, 15.2, 25.4, 21, and 38% in comparison with those of the raw-SWNT/PE composites.
Resumo:
An effective and facile in Situ reduction approach for the fabrication of carbon nanotube-supported Au nanoparticle (CNT/Au NP) composite nanomaterials is demonstrated in this article. Linear polyethyleneimine (PEI) is ingeniously used as both a functionalizing agent for the multiwalled carbon nanotubes (MWNTs) and a reducing agent for the formation of An NPs. This method involves a simple mixing process followed by a mild heating process. This approach does not need the exhaustive surface oxidation process of CNTs. The coverage of Au NPs on CNTs is tunable by varying the experimental parameters, such as the initial molar ratio of PEI to HAuCl4, the relative concentration of PEI and HAUCl(4) to MWNTs, and the temperature and duration of the heat treatment. More importantly, even the heterogeneous CNT/Au composite nanowires are obtainable through this method. TEM, XPS, and XRD are all used to characterize the CNT/Au composite materials. In addition, the optical and electrocatalytic properties are investigated.
Resumo:
The electrochemical polymerization of 0.01 M aniline in 1 M H2SO4 aqueous solution on roughened Au surface modified with a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated by in situ electrochemical surface-enhanced Raman scattering spectroscopy (SERS). The repeat units and possible structures of the electrodeposited polyaniline (PANI) film were proposed; i.e., aniline monomer is coupled in head-to-tail predominately at the C-4 of aniline and amine of 4-ATP, and the thin PANI film is orientated vertically to substrate surface. Simultaneous Raman spectra during potential scanning indicate clearly that the ultrathin PANI film (in initial growth of the film) consists of semiquinone radical cation (IP+), para-disubstituted benzene (IP and IP+) and quinine diimine (NP) while it is oxidized, and without quinine diimine and semiquinone radical cation while reduced. Meanwhile, the results confirm that 4-ATP monolayer shows a strong promotion on the electrodeposition of aniline monomer, and a possible polymerization mechanism was proposed.
Resumo:
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) into the Eastman-AQ55D-silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)(3)(2+) immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 mumol l(-1) for oxalate and 0.1 mumol l(-1) for both TPA and CPZ (S/N = 3), respectively. The linear range extended from 50 mumol l(-1) to 5 mmol l(-1) for oxalate, from 20 mumol l(-1) to 1 mmol l(-1) for TPA, and from 1 mumol l(-1) to 200 mumol l(-1) for CPZ.
Resumo:
Ethylene homopolymerizations and copolymerizations were catalyzed by zirconocene catalysts entrapped inside functionalized. montmorillonites that had been rendered organophilic via the ion exchange of the interlamellar cations of layered montmorillonite with hydrochlorides Of L-amino acids (AAH(+)Cl(-)) or their methyl esters (MeAAH(+)Cl(-)), with or without the further addition of hexadecyltrimethylammonium bromide (C16H33N+Me3Br-; R4N+Br-). In contrast to the homogeneous CP2ZrCl2/methylaluminoxane catalyst for ethylene homopolymerizations and copolymerizations with 1-octene, the intercalated Cp2ZrCl2 activated by methylaluminoxane for ethylene homopolymerizations and copolymerizations with 1-octene proved to be more effective in the synthesis of polyethylenes with controlled molecular weights, chemical compositions and structures, and properties, including the bulk density. The effects of the properties of the organic guests on the preparation and catalytic performance of the intercalated zirconocene catalysts were studied.