112 resultados para higher curvature gravity
Resumo:
As a marginal subject, dynamic responses of slopes is not only an important problem of engineering geology (Geotechnical problem), but also of other subjects such as seismology, geophysics, seismic engineering and engineering seismic and so on. Owning to the gulf between different subjects, it is arduous to study dynamic responses of slopes and the study is far from ripeness. Studying on the dynamic responses of slopes is very important in theories as well as practices. Supported by hundreds of bibliographies, this paper systemically details the development process of this subject, introduces main means to analyze this subject, and then gives brief remarks to each means respectively. Engineering geology qualitative analysis is the base of slopes dynamic responses study. Because of complexity of geological conditions, engineering geology qualitative analysis is very important in slopes stability study, especially to rock slopes with complex engineering geology conditions. Based on research fruits of forerunners, this paper summarizes factors influencing slopes dynamic stability into five aspects as geology background, stratums, rock mass structure, and topography as well as hydrogeology condition. Based on rock mass structure controlling theory, engineering geology model of the slope is grouped into two typical classes, one is model with obvious controlling discontinuities, which includes horizontal bedded slope, bedding slope, anti-dip slope, slide as well as slope with base rock and weathered crust; the other is model without obvious controlling discontinuities, which includes homogeneous soil slope, joint rock mass slope. Study on slope failure mechanism under dynamic force, the paper concludes that there are two effects will appear in slope during strong earthquake, one is earthquake inertia force, the other is ultra pore pressure buildup. The two effects lead to failure of the slope. To different types of slope failure, the intensity of two effects acting on the slope is different too. To plastic flow failure, pore pressure buildup is dominant; to falling rock failure and toppling failure, earthquake inertia force is dominant in general. This paper briefly introduces the principle of Lagrangian element method. Through a lot of numerical simulations with FLAC3D, the paper comprehensively studies dynamic responses of slopes, and finds that: if the slope is low, displacement, velocity and acceleration are linear enlarging with elevation increasing in vertical direction; if the slope is high enough, displacement, velocity and acceleration are not linear with elevation any more, on the other hand, they fluctuate with certain rhythm. At the same time, the rhythm appears in the horizontal direction in the certain area near surface of the slope. The distribution form of isoline of displacement, velocity and acceleration in the section of the slope is remarkably affected by the slope angle. In the certain area near the slope surface, isoline of displacement, velocity and acceleration is parallel to the surface of the slope, in the mean time, the strike direction of the extreraum area is parallel to the surface of the slope too. Beyond this area, the isoline direction and the strike direction of the extremum area turn to horizontal with invariable distance. But the rhythm appearing or not has nothing to with the slope angle. The paper defines the high slope effect and the low slope effect of slopes dynamic responses, discusses the threshold height H^t of the dynamic high slope effect, and finds that AW is proportional to square root of the dynamic elastic moduli El P , at the same time, it is proportional to period Tof the dynamic input. Thus, the discriminant of H^t is achieved. The discriminant can tell us that to a slope, if its height is larger than one fifth of the wavelength, its response regular will be the dynamic high slope effect; on the other hand, its response regular will be the dynamic low slope effect. Based on these, the discriminant of different slopes taking on same response under the same dynamic input is put forward in this paper. At the same time, the paper studies distribution law of the rhythm extremum point of displacement, velocity and acceleration, and finds that there exists relationship of N = int among the slope height H, the number of the rhythm extremum
VHlhro)
point N and ffthre- Furthermore, the paper points out that if N^l, the response of the slope will be dynamic high slope effect; \fN
Resumo:
Origins of H_2S, thiols, thiophenes in natural gases and sulphur-enriched oils are complicated and thus some debates exist on them. The post-doctoral research is based upon oil- and gas-field data. Cases for study include Triassic Jianglingjiang Formation natural gases, Wolonghe Field, Sichuan Basin, Paleozoic oils and bitumen, Central Tarim, gases reserviored nearby Carboniferious - Ordovician unconformity, Hetianhe Field, Tarim Basin and sulphur-enriched oils in Tertiary reserviors in Jinxian Sag, Bohai Bay Basin. We have carried out analyses on the oils and gases for chemistry, δ~(13)C, δ~(34)S, and molecular composition of biomarkers, analyzed authigenetic pyrite forδ~(34)S, formation water for chemistry and δD and δ~(18)O along with petroleum system and burial history analyses, The aims are to assess the origins of the H2S and authigenetic pyrite, to discuss the possibility of reduced sulphur incorporation into hydrocarbons and to determine the mechanisms of hydrocarbon secondary alteration in the above four cases by comparison. The research shows that the reduced sulphur in the four cases is the result of thermochemical and biological sulphate reduction., TSR and BSR, respectively. No evidence indicates an origin of decomposition of organic matter or mantle - derived H2S in the cases. Elevated H_2S contents (up to 32%) in the Triassic Jialingjiang Formation are considered to result from TSR while relatively low H_2S (up to 2000ppm) in the Hetianhe Field resulted from BSR. However, it is not the case for the Central Tarim where relatively low H2S but abundant authigenetic pyrite occurr. Part of the H_2S in the Central Tarim reservoirs has reacted with iron released from clay minerals to precipitate pyrite. Thus, reduced sulphur δ~(34)S and reservoir temperatures rather than the H2S amount are reliable parameters to distinguish between TSR and BSR. TSR in Sichuan Basin Triassic Jialingjiang Formation and Central Tarim Paleozoic reservoirs are showed to take place at more than 125℃. the H2S and authigenetic pyrite have δ~(34)S close to parent anhydrite. In contrast, BSR in the reservoirs near the Carboniferous - Ordovician unconformity in the Hetianhe Field and in the Tertiary in the Jinxian Sag took place at temperatures less than 80℃with sulphide δ~(34)S as light as -24.9‰ and -12.5‰, anhydrite δ~(34)S as heavy as +26‰and +3 5-+40‰, respectively. Chemistry and isotopic composition of the natural gases change as the result of sulphate reduction. It has been observed that relative composition of light hydrocarbon gases is changed along with a rise in H_2S and CO_2. TSR in the Triassic Jialingjiang Formation and BSR in the Hetianhe Field result in a greater degree of preferential depletion of methane than larger molecular hydrocarbon gases. As TSR or BSR proceeds, hydrocarbon gases evolved to heavier carbon isotope as the result of kinetic isotopic fractionation, i.e., selective anaerobic oxidation of ~(12)C. Using the model of residual methane (Whiticar, 1999) to describe the relationship among the proportion of methane oxidation, isotopic shift and fraction factor, about 30% methane is calculated to have been oxidized during BSR in the western part of the Hetianhe Field. From the above, it can be concluded that in the area where H_2S is abundant, empiricalδ~(13)C -Ro relationships do not work. Sulphate reduction results in a rise in sulphur content, gravity and viscosity of an oil as well as changes in δ~(13)C and δ~(34)S. On special conditions, the reduced sulphur from sulphates might be incorporated into oils, i.e., the increasing sulphur is derived from secondarily reduced sulphur. A positive correlative relationship exists between sulphur content and δ~(34)S in the oils in Paleozoic reservoirs in Central Tarim, indicating that enhanced sulphur is ~(34)S-enriched, originated from TSR. The Jinxian oil with the highest sulphur content has the lightest δ~(34)S, suggesting part of the sulphur in the oil is ~(34)S-depleted, originated from BSR. In the Jinxian oil with increasing sulphur content, asphaltenes shows higher content and more negative δ~(13)C, and saturates shows evidence of biodegradetion and a decreasing content and a positive δ~(13)C shift. Thus, asphaltenes have δ~(13)C values closer to saturates. All the above indicate that the reduced sulphur has been incorporated into biodegradated saturates to generate new asphaltenes with relatively light δ~(13)C of saturates. Thiols and thiophenes in natural gases in the Triassic Jialingjiang Formation may result from reaction of H_2S with hydrocarbon. In the Jialingjiang Formation hydrocarbon gases are dominated by methane thus have a high dryness coefficient and thiols are showed to be positively related to H_2S content, suggesting that the thiols may result from H_2S reaction with short chain hydrocarbons. In contrast, high thiophenes occur in wet gases in Jurassic reservoirs with their source rock from sulphur - depleted type I kerogen, indicating that thiophenes may be a product of reaction of H2S with longer chain hydrocarbons.
Resumo:
Qianmiqiao buried hill, which is a high-yield burial hill pool, was discovered at Dagang oilfield in 1998. To employ the integrated geological and geophysical research at Qianmiqiao area, it is very valuable and meaningful for the petroleum exploration of Bohai Bay Basin and even the whole country. Based on the previous results, this paper is carried out from the research on Huanghua depression, following the law, i.e. the deep part constrains the shallow, the regional constrains the local, takes the geophysical research in Qianmiqiao oilfield, discusses the formation history of burial hills, burial history, thermal history, the generated and expelling history of hydrocarbon, and migration characteristics, probes into the formation of burial hill pool. This paper uses the gravity and magnetic methods which are based on potential field, with natural sources, configures the inner structure of the earth according to the difference in the density and magnetism of the rock. The geophysical characteristics of Dagang oil field is that it is an area with positive Buge gravity anomal. The upheaval of Moho boundary is in mirror symmetry with the depression of the basin's basement. The positive and negative anomaly distributein axis symmetry, and the orientation is NNE. The thickness of the crust gradually reduces from west to east, from land to sea. The depth gradient strip of Curie surface is similar to Moho boundary, whereas their local buried depth is different. Local fractures imply that the orientation of base rock fractures is NNE-NE, and the base rock is intersected by the fractures of the same/ later term, whose orientation is NW, so the base rock likes rhombic mosaic. The results of tomography show that there exists significant asymmetry in vertical and horizontal direction in the velocity configuration of Huanghua depression. From Dezhou to Tianjin, there exits high-speed block, which extends from south to north. The bottom of this high-speed block is in good agreement with the depth of Moho boundary. Hence we can conclude that the high-speed block is actually the crystal basement. According to seismic data, well data and outcrop data, Huanghua depression can be divided into four structure layers, i.e. Pi,2-T, Ji,2-K, E, N-Q. Qianmiqiao burial hills undergo many tectonic movement, where reverse faults in developed in inner burial hill from Indosinian stage to Yanshanian stage, the normal faults extended in Himalayan stage. Under the influence of tectonic movements, the burial hills show three layers, i.e. the reverse rushing faults in buried hills, paleo-residual hill, and extended horst block. The evolution of burial hills can be divided into four stages: steady raising period from Calenonian to early Hercynian, rushing brake drape period from Indosinian to middle Yanshanian, block tilting period in early Tertiary, and heating depression period from late Tertiary to Quaternary. The basin modeling softwares BasinMod 1-D and Basin 2-D, which are made by PRA corporation, are used in this paper, according to the requirement, corresponding geological model is designed. And we model the burial history, thermal history, hydrocarbon generation and hydrocarbon expelling history of Qianmiqiao area. The results show that present bury depth is the deepest in the geological history, the sedimentary rate of Tertiary is highest and its rising rate of temperature rate is higher. During sedimentary history, there is no large erosion, and in the Tertiary, the deeper sediment was deposited in large space, therefore it is in favor of the conservation and transformation of oil and gas. The thermal research shows that the heat primarily comes from basement of the basin, present geotherm is the highest temperature in the geological history. Major source rock is the strata of ES3, whose organic is abundant, good-typed, maturative and of high-expulsive efficiency. The organic evolution of source rock of O has come to the overmature stage, the evolving time is long and the source rock can be easily destroyed. Therefore it is more difficult for the O formation source rock to form the huge accumulation of oil and gas than Es3 formation. In the research of oil assembling, we first calculated the characteristics of the fluid pressure of single well, then analyzed the distribution of the surplus fluid pressure of each formation and profile, and probe the first hydrocarbon migration situation and the distribution of pressure system of buried hill pool. In every formation, the pressure system of each burial hill has its own characteristics, e.g. high pressure or low pressure. In the research of secondary migration, the fluid potential is calculated while the relative low potential area is figured out. In Qianmiqiao area, the west margin faults have the low potential, and hence is the favorable reconnoiter belt.
Resumo:
With the improving of mantle convection theory, the developing of computing method and increasing of the measurement data, we can numerically simulate more clearly about the effects on some geophysical observed phenomenons such as the global heat flow and global lithospheric stress field in the Earth's surface caused by mantle convection, which is the primary mechanism for the transport of heat from the Earth's deep interior to its surface and the underlying force mechanism of dynamics in the Earth.Chapter 1 reviews the historical background and present research state of mantle convection theory.In Chapter 2, the basic conception of thermal convection and the basic theory about mantle flow.The effects on generation and distribution of global lithospheric stres s field induced by mantle flow are the subject of Chapter 3. Mantle convection causes normal stress and tangential stresses at the bottom of the lithosphere, and then the sublithospheric stress field induces the lithospheric deformation as sixrface force and results in the stress field within the lithosphere. The simulation shows that the agreement between predictions and observations is good in most regions. Most of subduction zones and continental collisions are under compressive. While ocean ridges, such as the east Pacific ridge, the Atlantic ridge and the east African rift valley, are under tensile. And most of the hotspots preferentially occur in regions where calculated stress is tensile. The calculated directions of the most compressive principal horizontal stress are largely in accord with that of the observation except for some regions such as the NW-Pacifie subduction zone and Qinghai-Tibet Plateau, in which the directions of the most compressive principal horizontal stress are different. It shows that the mantel flow plays an important role in causing or affecting the large-scale stress field within the lithosphere.The global heat flow simulation based on a kinematic model of mantle convection is given in Chapter 4. Mantle convection velocities are calculated based on the internal loading theory at first, the velocity field is used as the input to solve the thermal problem. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around midocean ridge systems can be reproduced very well. The predicted average temperature as a function of function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core-mantle boundary, the rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.In Chapter 5, the effects on present-day crustal movement in the China Mainland resulted from the mantle convection are introduced. Using a dynamic method, we present a quantitative model for the present-day crustal movement in China. We consider not only the effect of the India-Eurasia collision, the gravitational potential energy difference of the Tibet Plateau, but also the contribution of the shear traction on the bottom of the lithosphere induced by the global mantle convection. The comparison between our results and the velocity field obtained from the GPS observation shows that our model satisfactorily reproduces the general picture of crustal deformation in China. Numerical modeling results reveal that the stress field on the base of the lithosphere induced by the mantle flow is probably a considerable factor that causes the movement and deformation of the lithosphere in continental China with its eflfcet focuing on the Eastern China A numerical research on the small-scale convection with variable viscosity in the upper mantle is introduced in Chapter 6. Based on a two-dimensional model, small-scale convection in the mantle-lithosphere system with variable viscosity is researched by using of finite element method. Variation of viscosity in exponential form with temperature is considered in this paper The results show that if viscosity is strongly temperature-dependent, the upper part of the system does not take a share in the convection and a stagnant lid, which is identified as lithosphere, is formed on the top of system because of low temperature and high viscosity. The calculated surface heat flow, topography and gravity anomaly are associated well with the convection pattern, namely, the regions with high heat flow and uplift correspond to the upwelling flow, and vice versa.In Chapter 7, we give a brief of future research subject: The inversion of lateral density heterogeneity in the mantle by minimizing the viscous dissipation.