131 resultados para ground speed


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2.5-D and 3-D multi-fold GPR survey was carried out in the Archaeological Park of Aquileia (northern Italy). The primary objective of the study was the identification of targets of potential archaeological interest in an area designated by local archaeological authorities. The second geophysical objective was to test 2-D and 3-D multi-fold methods and to study localised targets of unknown shape and dimensions in hostile soil conditions. Several portions of the acquisition grid were processed in common offset (CO), common shot (CSG) and common mid point (CMP) geometry. An 8×8 m area was studied with orthogonal CMPs thus achieving a 3-D subsurface coverage with azimuthal range limited to two normal components. Coherent noise components were identified in the pre-stack domain and removed by means of FK filtering of CMP records. Stack velocities were obtained from conventional velocity analysis and azimuthal velocity analysis of 3-D pre-stack gathers. Two major discontinuities were identified in the area of study. The deeper one most probably coincides with the paleosol at the base of the layer associated with activities of man in the area in the last 2500 years. This interpretation is in agreement with the results obtained from nearby cores and excavations. The shallow discontinuity is observed in a part of the investigated area and it shows local interruptions with a linear distribution on the grid. Such interruptions may correspond to buried targets of archaeological interest. The prominent enhancement of the subsurface images obtained by means of multi-fold techniques, compared with the relatively poor quality of the conventional single-fold georadar sections, indicates that multi-fold methods are well suited for the application to high resolution studies in archaeology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies and dissociation energies for the ground state of Lu-2 were studied by density functional methods B3LYP, B3PW91, BLYP, BHLYP, BP86, B3P86, MPW1PW91, PBE1PBE and SVWN with CEP-121G and SDD basis sets. Singlet state is predicted to be the most stable. CEP-121G has a better overall performance than SDD. At CEP-121G basis set, all density functional methods used in this study perform well in reproducing the spectroscopic constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toughness of polypropylene (PP)/ethylene-propylene-diene monomer rubber (EPDM) blends containing various EPDM contents as a function of the tensile speed was studied. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. A sharp brittle-tough transition was observed in the fracture energy versus interparticle distance (ID) curves when the crosshead speed < 102.4 mm/min. It was observed that the brittle-ductile transition of PP/EPDM blend occurred either by reducing ID or by decreasing the tensile speed. The correlation between the critical interparticle distance and tensile deformation rate was compared with that between the critical interparticle distance and temperature for PP/EPDM blends. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of superground Mn-Zn ferrite single crystal may be identified as a self-affine fractal in the stochastic sense. The rms roughness increased as a power of the scale from 10(2) nm to 10(6) nm with the roughness exponent alpha = 0.17 +/- 0.04, and 0.11 +/- 0.06, for grinding feed rate of 15 and 10 mu m/rev, respectively. The scaling behavior coincided with the theory prediction well used for growing self-affine surfaces in the interested region for magnetic heads performance. The rms roughnesses increased with increase in the feed rate, implying that the feed rate is a crucial grinding parameter affecting the supersmooth surface roughness in the machining process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complete mitochondrial genome plays an important role in the accurate revelation of phylogenetic relationships among metazoans. Here we present the complete mitochondrial genome sequence from a sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea), which is the first representative from the subclass Aspidochirotacea. The mitochondrial genome of A. japonicus is 16,096 bp in length. The heavy strand consists of 31.8% A, 20.2% C, 17.9% G, and 30.1% T bases (AT skew = 0.027: GC skew = 0.062). It contains thirteen protein-coding genes (PCGs), twenty-two transfer RNA genes, and two ribosomal RNA genes. There are a total of 3793 codons in all thirteen mitochondrial PCGs, excluding incomplete termination codons. The most frequently used amino acid is Leu (15.77%), followed by Set (9.73%), Met (8.62%), Phe (7.94%), and Ala (7.28%). Intergenetic regions in the mitochondrial genome of A. japonicus are 839 bp in total, with three relatively large regions of Unassigned Sequences (UAS) greater than 100 bp. The gene order of A. japonicus is identical to that observed in the five studied sea urchins, which confirms that the gene order shared by the two classes (Holothuroidea and Echinoidea) is a ground pattern of echinoderm mitochondrial genomes. Bayesian tree based on the cob gene supports the following relationship: (outgroup, (Crinoids, (Asteroids, Ophiuroids, (Echinoids, Holothuroids)))). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermophily, fishing season and central fishing ground of Japanese pilchard (Sardinops melanosticta) were studied by using satellite remote sensing (SRS) and other methods in Haizhou Bay and Tsushima waters during 1986-1990. A rapid prediction method of fishing ground is presented. Moreover, the results indicated that the thermophilic values of the fish stock are 11-20 degrees C and both fishing grounds are in increasing temperature process from the beginning to the end of the fishing period. The Japanese pilchards gather vigorously at the sea surface temperature of 15-17 degrees C. The water temperature is a key factor affecting the fishing season and the catch of the fishing ground. The increasing temperature process restricts the fishing season development and central fishing ground formation. The accuracy of 15 predictions made in the Haizhou Bay fishing ground is up to 91.3%, and 37 predictions made in the Tsushima, fishing ground shorten the fish detection time by 13.4% - 22% on the average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent investigations show that normalized radar cross sections for C-band microwave sensors decrease under high wind conditions with certain incident angles instead of increase, as is the case for low to moderate wind speeds. This creates the problem of ambiguities in high wind speed retrievals from synthetic aperture radar (SAR). In the present work, four geophysical model functions (GMFs) are studied, namely the high wind C-band model 4 (CMOD4HW), C-band model 5 (CMOD5), the high wind vertical polarized GMF (HWGMF_VV), and the high wind horizontal polarized GMF (HWGMF_HH). Our focus is on model behaviours relative to wind speed ambiguities. We show that, except for CMOD4HW, the other GMFs exhibit the wind speed ambiguity problem. To consider this problem in high wind speed retrievals from SAR, we focus on hurricanes and propose a method to remove the speed ambiguity using the dominant hurricane wind structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under strong ocean surface wind conditions, the normalized radar cross section of synthetic aperture radar (SAR) is dampened at certain incident angles, compared with the signals under moderate winds. This causes a wind speed ambiguity problem in wind speed retrievals from SAR, because two solutions may exist for each backscattered signal. This study shows that the problem is ubiquitous in the images acquired by operational space-borne SAR sensors. Moreover, the problem is more severe for the near range and range travelling winds. To remove this ambiguity, a method was developed based on characteristics of the hurricane wind structure. A SAR image of Hurricane Rita (2005) was analysed to demonstrate the wind speed ambiguity problem and the method to improve the wind speed retrievals. Our conclusions suggest that a speed ambiguity removal algorithm must be used for wind retrievals from SAR in intense storms and hurricanes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gridded sound speed data were calculated using Del Grosso's formulation from the temperature and salinity data at the PN section in the East China Sea covering 92 cruises between February 1978 and October 2000. The vertical gradients of sound speed are mainly related to the seasonal variations, and the strong horizontal gradients are mainly related to the Kuroshio and the upwelling. The standard deviations show that great variations of sound speed exist in the upper layer and in the slope zone. Empirical orthogonal function analysis shows that contributions of surface heating and the Kuroshio to sound speed variance are almost equivalent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler. The optimization of parameters was carried out using an orthogonal test L-9 (3)(4) including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55 degrees C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6-aldehydo-isoophiopogonone A, and 6-formyl-isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6-aldehydo-isoophiopogonone A (98.3% purity) and 13.5 mg of 6-formyl-isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI-MS and NMR analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale has been successfully applied to the separation of bioactive flavonoid compounds, liquiritigenin and isoliquiritigenin in one step from the crude extract of Glycyrrhiza uralensis Risch. The HSCCC was performed using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (2:2:1:0.6:2, v/v). Yields of liquiritigenin (98.9% purity) and isoliquiritigenin (98.3% purity) obtained were 0.52% and 0.32%. Chemical structures of the purified liquiritigenin and isoliquiritigenin were identified by electrospray ionization-MS (ESI-MS) and NMR analysis. (c) 2005 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文提出了一种结构化环境下,基于立体视觉的机器人楼梯识别算法,并将算法该应到自主移动机器人上。该算法首先利用二维图像分析的方法搜索楼梯的疑似区域;进而利用立体视觉对各个疑似区域进行精确三维重建,结合三维信息重构楼梯平面,排除虚假疑似楼梯区域;最后判定机器人和楼梯的相对位姿关系,引导机器人爬楼梯。最终我们将该算法应用到了自主移动机器人上,通过在各种光照条件下的实验,进一步验证了该算法的准确性和快速性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability and derailment behavior analysis of railway vehicle system has been discussed by many papers in the past. In stability, give first place to consider hunting behavior of vehicle, therefore most of papers was only consider lateral and yaw motion, but vertical motion is the important factor in derailment behavior, and it will be quite effect in stability. We will probe the running stability and derailment behavior of railway vehicle moving on the viaduct in this paper. In this paper, we use Nadal’s formula to get the derailment quotient. In this paper, the railway vehicle is considered to be three subsystems, carbody, bogie and wheelset. There are secondary suspension systems between carbody and bogies, and primary suspension systems connecting bogies and wheelsets. A vehicle with vertical, lateral, roll, and yaw directions motion is considered to derive the mathematical equations. A vehicle with three-dimensional model has 16 degrees of freedom is used to develop the equations of train motion. In this study, results show that the track shift force and derailment factor increase with an increase of ground acceleration. But for the track shift force and derailment factor, the effects of track irregularities and train speed are very small. Key words: earthquake, railway vehicle, viaduct, derailment factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rockmass movement due to mining steep metallic ore body is a considerable question in the surface movement and deformation issue caused by underground mining. Research on coal mining induced rockmass movement and its prediction problem have been performed for a long-term, and have achieved great progress at home and abroad. However, the rockmass movement caused by mining steep metal mine is distinctivly different from coal seam mining.. Existing surface movement laws and deformation prediction methods are not applicable to the rockmass movement caused by mining steep metal mine. So far the home and abroad research to this theory is presently at an early stage, and there isn’t mature theory or practical prediction method, which made a great impact on production. In this paper, the research object—Jinchuan nickel mine, which is typical steep metal mine, characterized by complex geological conditions, developed faults, cracked rockmass, high geostress, and prominent engineering stability problems. In addition, backfill mining method is used in the mine, the features of rockmass movement caused by this mining method are also different from other mining methods. In this paper, the laws of rock mass movement, deformation and destroy mechanism, and its prediction were analyzed based on the collection of data, detailed in-sit engineering geology survey, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring of ground surface movement, ground subsidence basin with apparent asymmetry is developing, the influence scope is larger in the upper faulted block than in the lower faulted block, and the center of ground movement is moving along the upper faulted block direction with increasing depth of mining. During the past half and seven years, the largest settlement has amounted to 1287.5mm, and corresponding horizontal displacement has amounted to 664.6mm. On the ground surface, two fissure belts show a fast-growing trend of closure. To sum up, mining steep metal mine with backfill method also exist the same serious problem of rockmass movement hazards. Fault, as a low intensity zone in rockmass, when it located within the region of mining influence, the change of potential energy mainly consumed in fault deformation associated with rockmass structure surface friction, which is the essence of displacement and stress barrier effects characterized by fault rupture zone. when steep fault located in the tensile deformation region incurred by underground excavation, no matter excavation in hangingwall or in footwall of the fault, there will be additional tensile stress on the vertical fault plane and decrease in the shear strength, and always showing characteristics of normal fault slip, which is the main reason of fault escarpment appeared on the ground surface. The No.14 shaft deformation and failure is triggered by fault activation, which showed with sidewall move, rupture, and break down features as the main form of a concentrated expression of fault effects. The size and orientation of principal stress in surrounding rock changed regularly with mining; therefore, roadway deformation and damage at different stages have different characteristics and distribution models. During the process of mining, low-intensity weak structures surface always showed the most obvious reaction, accompany with surface normal stress decrease and shear strength bring down, to some extent, occurred with relative slide and deformation. Meanwhile, the impact of mining is a relatively long process, making the structure surface effect of roadway deformation and damage more prominent than others under the influence of mining. Roadway surrounding rockmass deformation caused by the change of strain energy density field after excavation mainly belongs to elastic deformation, and the correspondented damage mainly belongs to brittle rupture, in this circumstance, surrounding rockmass will not appear large deformation. The large deformation of surrounding rockmass can only be the deformation associated with structure surface friction or the plastic deformation of itself, which mainly caused by the permanent self-weigh volume force,and long-term effect of mining led to the durability of this deformation Good pitting fill effect and supporting effect of backfill, as well as the friction of rockmass structure surface lead to obvious macro-rockmass movement with long-lag characteristics. In addition, the loss of original intensity and new structure surface arisen increased flexibility in rockmass and fill deformation in structure surface, which made the time required for rockmass potential energy translate into deformation work associated with plastic deformation and structure surface friction consumed much, and to a large extent, eliminated the time needed to do those plastic work during repeated mining, all of which are the fundamental reason of rockmass movement aftereffect more significant than before. Mining steep deposits in high tectonic stress area and in gravity stress area have different movement laws and deformation mechanism. The steep deposit, when the vertical size of the mining areas is smaller than the horizontal size of the orebody, no matter mining in gravity stress area or in high tectonic stress area, they have similar features of ground movement with mining horizontal orebody; contrarily, there will appear double settlement centers on the ground surface under the condition of mining in high tectonic stress area, while there will always be a single center under the other condition. Meanwhile the ground movement lever, scale of mining influence area and macro features of ground movement, deformation and fracture are also different from mining in gravity stress area, and the fundamental reason lies in the impact of orientation of the maximum principal stress on rock movement features in in-site rock stress field. When mining thick and steep deposit, the ground surface movement and deformation characteristic curves are significantly different from excavating the horizontal ore bed and thin steep deposit. According to the features of rockmass movement rate, the development process of mining-induced rockmass movement is divided into three stages: raising stage, steadily stage and gradually decay stage. Considering the actual exploitation situation, GPS monitoring results and macro-characteristics of surface movement, the current subsidence pattern of Jinchuan No.2 mine is in the early stage of development. Based on analysis of surface movement rate, surface subsidence rate increase rapidly when mining in double lever at the same time, and reach its peak until the exploitation model ended. When double lever mining translate into single, production decreased, surface subsidence rate suddenly start to reduce and maintain a relatively low value, and the largest subsidence center will slowly move along with the hangingwall ore body direction with increasing depth of mining, at the same time, the scope and extent of subsidence in footwall ore body will begin magnify, and a sub-settlement center will appear on ground surface, accompanied with the development and closure trend of ground fissure, the surrounding rockmass of shaft and roadway will be confronted to more frequent and severe deformation and failure, and which will have a negative impact on the overall stability of No.2 mine mining. On the premise of continuity of rockmass movement, gray system model can be used in ground rockmass movement prediction for good results. Under the condition of backfill mining step by step, the loose effect of compact status of the hard, broken rockmass led to lower energy release rate, although surrounding rockmass has high elastic energy, loose and damage occurred in the horizontal ore body, which made the mining process safety without any large geological hazards. During the period of mining the horizontal ore body to end, in view of its special “residual support role”, there will be no large scale rockmass movement hazards. Since ground surface movement mainly related to the intensity of mining speed and backfill effect, on the premise of constant mining speed, during the period of mining the horizontal ore body to end, the rate of ground surface rockmass movement and deformation won’t have sudden change.