190 resultados para grating-assisted SP-laser coupling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specklegram in a multimode fiber (MMF) has successfully been used as a sensor for detecting external disturbance. Our experiments showed that the sensitivity in the sensor with a multiple longitudinal-mode laser as its source was much higher than that with a single longitudinal-mode laser. In addition, the near-field pattern observations indicated that the coupling between different transverse modes in the MMF is quite weak. Based on the experimental results, a theoretical model for the speckle formation is proposed, taking a bend-caused phase factor into consideration. It is shown in the theoretical analysis that the interferences between different longitudinal modes make a larger contribution to the specklegram signals. (C) 2007 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In petawatt laser system, the gratings used to compose pulse compressor are very large in size which can be only acquired currently by arraying small aperture gratings to form a large one instead, an approach referred to as grating tiling. Theory and experiments have demonstrated that the coherent addition of multiple small gratings to form a larger grating is viable, the key technology of which is to control the relative position and orientation of each grating with high precision. According to the main factors that affect the performance of the grating tiling, a 5-DOF ultraprecision stage is developed for the grating tiling experiment. The mechanism is formed by serial structures. The motion of the mechanism is guided by flexure hinges and driven by piezoelectric actuators and the movement resolution of which can achieve nanometer level. To keep the stability of the mechanism, capacitive position sensors with nanometer accuracy are fixed on it to provide feedback signals with which to realize closed-loop control, thus the positioning precision of the mechanism is within several nanometers range through voltage control and digital PID algorithm. Results of experiments indicate that the performance of the mechanism can meet the requirement of precision for grating tiling.}

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a four-pass laser pulse compressor design based on two grating apertures with two gratings per aperture that is tolerant to some alignment errors and, importantly, to grating-to-grating period variations. Each half-beam samples each grating in a diamond-shaped compressor that is symmetric about a central bisecting plane. For any given grating, the two half-beams impinge on opposite sides of its surface normal. It is shown that the two split beams have no pointing difference from paired gratings with different periods. Furthermore, no phase shift between half-beams is incurred as long as the planes containing a grating line and the surface normal for each grating of the pair are parallel. For grating pairs satisfying this condition, gratings surfaces need not be on the same plane, as changes in the gap between the two can compensate to bring the beams back in phase. © 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using quite uniformly nine-stacks side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser with high slope efficiency of 62% has been demonstrated. With 450 W quasi-CW stacked laser diode bars pumping at 808 nm, performance of the Nd: YAG ceramic laser with different output coupling mirrors has been investigated. Optimum output power of 236 W at 1064 nm was obtained and corresponding optical-to-optical conversion efficiency was as high as 52.5%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output laser power could be obtained if injecting higher pumping power. The still-evolving Nd: YAG ceramics are potential super excellent media for high power practical laser applications. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450 mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759 W, a minimum pulse duration of 86 ns, and a 6.7 kHz repetition rate at 3.7 W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting. (C) 2008 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive-index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio ( PER) of 61: 1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58: 1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity. (C) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the optical property changes for Ce3+-doped Gd2SiO5 crystal irradiated by a femtosecond (fs) laser. Absorption spectra showed that Ce-related color centers were formed in this crystal after an 800 nm fs laser irradiation. The annealing temperature-dependence of the refractive index and absorption intensity changes have been investigated. Furthermore, a new way of writing overlapped gratings inside the crystal by use of birefringence of fs laser beam in this crystal was proposed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prepare HfO2 thin films by electron beam evaporation technology. The samples are annealed in air after deposition. With increasing annealing temperature, it is found that the absorption of the samples decreases firstly and then increases. Also, the laser-induced damage threshold (LIDT) increases firstly and then decreases. When annealing temperature is 473K, the sample has the highest LIDT of 2.17J/cm(2), and the lowest absorption of 18 ppm. By investigating the optical and structural characteristics and their relations to LIDT, it is shown that the principal factor dominating the LIDT is absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high reflection (HR) mirror composed of dielectric stacks with excellent spectrum characteristics and high damage resistant ability is critical for fabricating multilayer dielectric (MLD) grating for pulse compressor. The selection of the SiO2 material as the top layer of the HR mirror for grating fabrication is beneficial for improving the laser-induced damage threshold of MLD grating as well as minimizing the standing-wave effect in the photoresist during the exposure process. Based on an (HLL) H-9 design comprising quarter-waves of HfO2 ( H) and half-waves of SiO2 ( L), we obtain an optimal design of the HR mirror for MLD grating, the SiO2 top layer of which is optimized with a merit function including both the diffraction efficiency of the MLD grating and the electric field enhancement in the grating. Dependence of the performance of the MLD grating on the fabrication error of the dielectric mirror is analysed in detail. The HR mirror is also fabricated by E-beam evaporation, which shows good spectral characteristics at the exposure wavelength of 413 nm and at the operation wavelength of 1053 nm and an average damage threshold of 10 J cm(-2) for a 12 ns pulse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin-film design used to fabricate multi-layer dielectric (MLD) gratings should provide high transmittance during holography exposure, high reflectance at use wavelength and sufficient manufacturing latitude of the grating design making the MLD grating achieve both high diffraction efficiency and low electric field enhancement. Based on a (HLL)H-9 design comprising of quarter-waves of high-index material and half-waves of low-index material, we obtain an optimum MLD coating meeting these requirements by inserting a matching layer being half a quarter-wave of Al2O3 between the initial design and an optimized HfO2 top layer. The optimized MLD coatings exhibits a low reflectance of 0.017% under photoresist at the exposure angle of 17.8 degrees for 413 nm light and a high reflectance of 99.61% under air at the use angle of 51.2 degrees for 1053 nm light. Numerical calculation of intensity distribution in the photoresist coated on the MLD film during exposure shows that standing-wave patterns are greatly minimized and thus simulation profile of photoresist gratings after development demonstrates smoother shapes with lower roughness. Furthermore, a MLD gratings with grooves etched into the top layer of this MLD coating provides a high diffraction efficiency of 99.5% and a low electric field enhancement ratio of 1.53. This thin-film design shows perfect performances and can be easily fabricated by e-beam evaporation. (c) 2006 Elsevier B.V. All rights reserved.