113 resultados para etymological roots


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potentilla fruticosa scrub, Kobresia humilis meadow and Kobresia tibetica meadow are widely distributed on the Qinghai-Tibet Plateau. During the grass exuberance period from 3 July to 4September, based on close chamber-GC method, a study on CO2 emissions from different treatments was conducted in these meadows at Haibei research station, CAS. Results indicated that mean CO2emission rates from various treatments were 672.09+152.37 mgm-2h-1 for FC (grass treatment); 425.41+191.99 mgrn-2h-1 for FJ (grass exclusion treatment); 280.36+174.83 mgrn-2h-1 for FL (grass and roots exclusion treatment); 838.95+237.02 mgm-2h-1 for GG (scrub+grass treatment); 528.48+205.67 mgm-2h-1for GC (grass treatment); 268.97 ±99.72 mgm-2h-1 for GL (grass and roots exclusion treatment); and 659.20±94.83 mgm-2h-1 for LC (grass treatment), respectively (FC, FJ, FL, GG, GC, GL, LC were the Chinese abbreviation for various treatments). Furthermore, Kobresia humilis meadow, Potentilla fruticosa scrub meadow and Kobresia tibetica meadow differed greatly in average CO2 emission rate of soil-plant system, in the order of GG>FC>LC>GC. Moreover, in Kobresia humilis meadow,heterotrophic and autotrophic respiration accounted for 42% and 58% of the total respiration of soil-plant system respectively, whereas, in Potentilla fruticosa scrub meadow, heterotrophic and autotrophic respiration accounted for 32% and 68% of total system respiration from G-G; 49% and 51%from GC. In addition, root respiration from Kobresia humilis meadow approximated 145 mgCO2m-2h-1,contributed 34% to soil respiration. During the experiment period, Kobresia humilis meadow and Potentilla fruticosa scrub meadow had a net carbon fixation of 111.11 grn-2 and 243.89 grn-2,respectively. Results also showed that soil temperature was the main factor which influenced CO2 emission from alpine meadow ecosystem, significant correlations were found between soil temperature at 5 cm depth and CO2 emission from GG, GC, FC and FJ treatments. In addition, soil moisture may be the inhibitory factor of CO2 emission from Kobresia tibetica meadow, and more detailed analyses should be done in further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Object To study the chemical constituents of Euphorbia wallichii.Methods The constituents were repeatedly separated and purified on silica gel column.They were identified on the basis of spectral methods.Results Nine diterpenoids were obtained from the roots of E. wallichii.Among them jolkinol B(I) is lathyrane type;caudicifolin (Ⅱ),helioscopinolides A(Ⅲ),C(Ⅳ),and E(Ⅴ) belong to abietane type;while ent-atisane-3β,16α,17-triol(Ⅵ),ent-16α,17-dihydroxyatisan-3-one(Ⅶ),ent-3β,(13S)-dihydroxyatis-16-en-14-one(Ⅷ),and ent-2-hydroxy-atis-1,16(17)-dien-3,14-dione(Ⅸ) possess an ent-atisane skeleon.Conclusion All of them are isolated from E. wallichii for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eleven known compounds were isolated from the roots of Euphorbia wallichii for the first time. They were elucidated to be three triterpenoids, β-amyrin (1), β-amyrin acetate (2) and 3β-acetoxy-lupenol (3), one nor-triterpene peroxide baccatin (4), two caffeic esters (5a, 5b), palmitic acid-2,3-dihydroxypropanenyl ester (6), palmitic acid (7), scopoletin (8), β-sitosterol (9) and daucosterol (10) on the basis of spectral methods. Among them, compound 5a, 5b were reported firstly in the spurge family. And the NMR assignments of compounds 5a and 5b were given for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two new lathyrane diterpenes, 3 beta,5 alpha-dihydroxy-15 beta-cinnamonyloxy-14-oxoladiyra-6Z, 12E- diene (1) and 3 beta,5 alpha,20-trihydroxy-15 beta-cinnamoyloxy-14-oxolathyra-6Z, 12E-diene (2), were isolated from the roots of Euphorbia kansuensis. Their structures were determined by spectroscopic methods. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel rearranged trachylobane diterpenoids, designated as wallichanol A (2) and wallichanol B (3), consisting of an unprecedented pentacyclic skeleton named wallichane with a cyclobutane ring, and a new ent-trachylobane diterpenoid, 3-oxo-ent-trachyloban-17-oic acid (1), were isolated from the roots of Euphorbia wallichii. Their structures were elucidated by comprehensive analysis of 2D-NMR spectroscopic data, with the stereochemistry of 1 confirmed by X-ray crystallographic study. All of these compounds potently block osteoclastogenesis in vitro, suggesting a potential therapeutic application in prevention of osteoporosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new guaiane-type diterpenoid, (1 alpha, 5 alpha, 7 alpha)-3,10(18), 11-dictytriene-19-acid, was obtained from the roots of Euphorbia wallichii. This is the first isolation of guaiane diterpene from this genus of Euphorbia. The structure was elucidated by spectral methods. And the compound was tested for the cytotoxicities on the cancer cell line P-388 and A-549 in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three new abietane diterpene lactones, 3alpha-hydroxyjolkinolide A (1), ent-8alpha,14beta-dihydroxy-13(15)-ene-16(12alpha)-abietanolide (2) and ent-8alpha,14alpha-dihydroxy-13(15)-ene-16(12alpha)-abietanolide (3) as well as a known abietane diterpene jolkinolide A (4) were isolated from the roots of Euphorbia wallichii. Their structures were elucidated on the basis of spectroscopic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+, treatments. Furthermore, in the control, the plant accumulates Se-75, Co-56, and V-48 all in the order roots>leaves>stems, whereas Tc-95m was in the order leaves>stems>roots. The accumulations of Se-75 and Tc-95m in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.