113 resultados para effect of cell size
Resumo:
To investigate the effects of body size and water temperature on feeding and growth in the sea cucumber Apostichopus japonicus (Selenka), the maximum rate of food consumption in terms of energy (C-maxe; J day(-1)) and the specific growth rate in terms of energy (SGRe; % day(-1)) in animals of three body sizes (mean +/- SE) - large (134.0 +/- 3.5 g), medium (73.6 +/- 2.2 g) and small (36.5 +/- 1.2 g) - were determined at water temperatures of 10, 15, 20, 25 and 30 degrees C. Maximum rate of food consumption in terms of energy increased and SGRe decreased with increasing body weight at 10, 15 and 20 degrees C. This trend, however, was not apparent at 25 and 30 degrees C, which could be influenced by aestivation. High water temperatures (above 20 degrees C) were disadvantageous to feeding and growth of this animal; SGRe of A. japonicus during aestivation was negative. The optimum temperatures for food consumption and for growth were similar and were between 14 and 15 degrees C, and body size seemed to have a slight effect on the optimal temperature for food consumption or growth. Because aestivation of A. japonicus was temperature dependent, the present paper also documented the threshold temperatures to aestivation as indicated by feeding cessation. Deduced from daily food consumption of individuals, the threshold temperature to aestivation for large and medium animals (73.3-139.3 g) was 24.5-25.5 degrees C, while that for small animals (28.9-40.7 g) was between 25.5 and 30.5 degrees C. These values are higher than previous reports; differences in sign of aestivation, experimental condition and dwelling district of test animals could be the reasons.
Resumo:
Antioxidant activity of kappa-carrageenan oligosaccharides (OM) and their chemical modification derivatives was investigated employing various established in vitro systems, such as reducing power, iron ion chelation, and total antioxidant activity using beta-carotene-linoleic acid system. The oversulfated (SD), lowly (LAD), and highly acetylated derivatives (HAD) in reducing power assay, the phosphorylated derivative (PD) in metal chelating assay, and oversulfated and phosphorylated derivatives in total antioxidant activity assay exhibited antioxidant activity higher than that of carrageenan oligosaccharides. The results indicated that the chemical modification of carrageenan oligosaccharides can enhance their antioxidant activity in vitro. The protective effects of the carrageenan oligosaccharides and their chemically modified derivatives against H2O2 and UVA (long-wave ultraviolet radiation) induced oxidative damage on rat thymic lymphocyte were investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT). Thymic lymphocyte exposure to H2O2 and UVA, a marked reduction in cell survival was observed, which was significantly prevented by carrageenan oligosaccharides and their derivatives (preincubated for 2 h) at 66.7-2000 mu g/mL. But both the carrageenan oligosaccharides and their different derivatives showed the similar protective effects on intracellular level. Taken together, these results suggest that carrageenan oligosaccharides and their derivatives show relevant antioxidant activity both in vitro and in a cell system. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
To investigate the antitumor effect of bromophenol derivatives in vitro and Leathesia nana extract in vivo, six bromophenol derivatives 6-(2,3-dibromo-4,5-dihydroxybenzyl)-2,3-dibromo-4,5-dihydroxy benzyl methyl ether (1), (+)-3-(2,3-dibromo-4,5-dihydroxyphenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroisobenzofuran (2), 3-bromo-4-(2,3-dibromo-4,5-dihydroxybenzyl)-5-methoxymethyl-pyrocatechol (3), 2,2',3,3'-tetrabromo-4,4',5,5'-tetrahydroxy-diphenylmethane (4), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (5), 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxymethyldiphenylmethane (6) were isolated from brown alga Leathesia nana, and their cytotoxicity were tested by MTT assays in human cancer cell lines A549, BGC-823, MCF-7, B16-BL6, HT-1080, A2780, Bel7402 and HCT-8. Their inhibitory activity against protein tyrosine kinase (PTK) with over-expression of c-kit was analyzed also by ELISA. The antitumor activity of ethanolic extraction of Leathesia nana (EELN) was evaluated on S-180-bearing mice. All compounds showed very potent cytotoxicity against all of the eight cancer cell lines with IC50 below 10 mu g/mL. In PTK inhibition study, all bromophenol derivatives showed moderate inhibitory activity and compounds 2, 5 and 6 showed significant bioactivity with the inhibition ratio of 77.5%, 80.1% and 71.4%, respectively. Pharmacological studies reveal that EELN could inhibit the growth of Sarcoma 180 tumor and increase the indices of thymus and spleen to improve the immune system remarkably in vivo. Results indicated that the bromophenol derivatives and EELN can be used as potent antitumor agents for PTK over-expression of c-kit and considered in a new therapeutic strategy for treatment of cancer.
Resumo:
Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.
Resumo:
Quantification of areal evapotranspiration from remote sensing data requires the determination of surface energy balance components with support of field observations. Much attention should be given to spatial resolution sensitivity to the physics of surface heterogeneity. Using the Priestley-Taylor model, we generated evapotranspiration maps at several spatial resolutions for a heterogeneous area at Haibei, and validated the evapotranspiration maps with the flux tower data. The results suggested that the mean values for all evapotranspiration maps were quite similar but their standard deviations decreased with the coarsening of spatial resolution. When the resolution transcended about 480 m, the standard deviations drastically decreased, indicating a loss of spatial structure information of the original resolution evapotranspiration map. The absolute values of relative errors of the points for evapotranspiration maps showed a fluctuant trend as spatial resolution of input parameter data layers coarsening, and the absolute value of relative errors reached minimum when pixel size of map matched up to measuring scale of eddy covariance system. Finally, based on the analyses of the semi-variogram of the original resolution evapotranspiration map and the shapes of spatial autocorrelation indices of Moran and Geary for evapotranspiration maps at different resolutions, an appropriate resolution was suggested for the areal evapotranspiration simulation in this study area.
Resumo:
The catalytic behavior of Mo-based zeolite catalysts with different pore structure and size, particularly with 8 membered ring ( M R), 10 M R, coexisted 10 and 12 M R, and 12 M R, was studied in methane aromatization under the conditions of SV=1500 ml/(g.h), p=0.1 MPa and T = 973 K. It was found that the catalytic performance is correlated with the pore structure of the zeolite supports. The zeolites that possess 10 MR or 10 and 12 MR pore structure with a pore diameter equal to or slightly larger than the dynamic diameter of benzene molecule, such as ZSM-5, ZSM-11, ZRP-1 and MCM-22, are fine supports. Among the tested zeolite supports, MCM-22 exhibits the highest activity and selectivity for benzene. A methane conversion of 10.5% with benzene selectivity of 80% was achieved over Mo/MCM-22 catalyst. The Mo/ERS-7 catalyst with 8 MR (0.45 nm) does not show any activity in methane dehydro-aromatization, while Mo/JQX-1 and Mo/SBA-15 catalysts with 12 MR pore exhibit little activity in the reaction. It can be concluded that the zeolites with 10 MR pore or coexisted 10 and 12 MR, having pore size equal to or slightly larger than the dynamic diameter of benzene molecule, are fine supports for methane activation and aromatization.
Resumo:
Hydrogenation of nitrobenzene can be catalyzed by the water-soluble catalyst PdCl2(TPPTS)(2) (TPPTS = tris(m-sulfonatophenyl)phosphine trisodium salt) under normal pressure at 65 degrees C in H2O/toluene biphasic solvent system. The exhibits higher catalytic activity and selectivity for the hydrogenation of aromatic nitrocompounds, compared with PdCl2(TPPTS)(2) or H2PtCl6 alone. The transmission electron micrographs demonstrate that the monometallic catalyst is composed of ultrafine palladium particles of almost uniform size while the particles of bimetallic catalyst are more widely distributed in size than those of the monometallic ones. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.