106 resultados para dussertite, arsenate, crandallite group, Raman spectroscopy, infrared spectroscopy, hydroxyl ions, molecular water, adsorbed water
Resumo:
The surfactant assistant syntheses of sulfonic acid functionalized periodic mesoporous organosilicas with large pores are reported. A one-step condensation of tetramethoxysilane (TMOS) with 1,2-bis(trimethoxysilyi)ethane (BTME) and 3-mercaptopropyltrimethoxysilane (MPTMS) in highly acidic medium was performed in the presence of triblock copolymer Pluronic P123 and inorganic salt as additive. During the condensation process, thiol (-SH) group was in situ oxidized to sulfonic acid (-SO3H) by hydrogen peroxide (30 wt % H2O2). X-ray diffraction studies along with nitrogen and water sorption analyses reveal the formation of stable, highly hydrophobic, and well-ordered hexagonal mesoscopic structures in a wide range of -CH2CH2-concentrations in the mesoporous framework. The resultant materials were also investigated by Si-29 MAS and C-13 CP MAS NMR, thermogravimetric analyses, UV-Raman spectroscopy, and FT-IR spectroscopy. The role of the bridged organic group on the hydrothermal stability of the mesoporous materials was established, which revealed an enhancement in hydrothermal stability of the materials with incorporation of the bridged organic groups in the network. The catalytic performance of -SO3H functionalized mesoporous materials was investigated in the esterification of ethanol with acetic acid, and the results demonstrate that the ethane groups incorporated in the mesoporous framework have a positive influence on the catalytic behavior of the materials.