115 resultados para dorsal hippocampus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the material deposited in the Museum national d'Histoire naturelle, Paris, collected from the Indo-West Pacific, principally from the New Caledonian region, the present paper reports 117 palaemonoid shrimp species, which belong, respectively, to Anchistioididae ( one genus, one species), Gnathophyllidae ( one genus, one species), Palaemonidae Palaemoninae ( seven genera, nine species), and Palaemonidae Pontoniinae ( 30 genera, 106 species), including eight new species. The new species are all Pontoniinae: Mesopontonia brevicarpalis sp. nov., Palaemonella komaii sp. nov., Periclimenes crosnieri sp. nov., Periclimenes forgesi sp. nov., Periclimenes loyautensis sp. nov., Periclimenes paralcocki sp. nov., Periclimenes paraleator sp. nov., and Periclimenes pseudalcocki sp. nov. The last six new species are members of the deep-water "Periclimenes alcocki species complex'', which has more than two ( usually four) pairs of dorsolateral telson spines anterior to the posterior telson margin, the cornea is usually reduced, the dactyl of the major second chela is generally flanged and the chela is sometimes covered with small tubercles. The complex is usually found at more than 200m depth in the West Pacific. The species can be distinguished from each other by the armature of ambulatory propod and dactyl, diameter of cornea, rostrum shape and the number of pairs of dorsolateral telson spines. Mesopontonia brevicarpalis sp. nov., from the southeast coast of Africa, is the seventh species of the genus. Palaemonella komaii sp. nov. is very similar to Palaemonella dolichodactylus Bruce, 1991 and Palaemonella hachijo Okuno, 1999. These three species share the features of very long and slender ambulatory pereiopods with the dactyl more than eight times longer than its basal depth and with several long setae on the dorsal dactylar margin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology and infraciliature of a new ciliate, Metastrongylidium distichum, isolated from the Yellow Sea, are investigated using live observation and protargol impregnation. Metastrongylidium distichum is about 170 x 40 pm in vivo, clavate to elongate ellipsoidal with bluntly pointed posterior end, and has two macronuclear nodules, six distinctly large buccal and frontal cirri, three dorsal kineties and two each of spiralled ventral and marginal cirral rows. These features indicate a generic allocation in Strongylidium Sterki, 1878. However, the new ciliate has a distinct feature not recognizable in Strongylidiurn, viz., the presence of (three or four) transverse cirri. Thus, we propose a new genus Metastrongylidium for the new species, M distichum nov. gen., n. sp. Metastrongylidium belongs to the family Spirofilidae, where it differs from Mucotrichidium by the lack of postperistomial cirrus and the different frontal and ventral cirral pattern. Metastrongylidium distichum is easily distinguishable from the seemingly similar species Strongylidium californicum Kahl, 1932 by the macronuclear pattern (invariably 2 vs. many nodules). It highly resembles the poorly known species S. contortum (Gelei 1954) Borror, 1972 in the body outline and nuclear pattern, differing in the biotope, the posterior cirral pattern, and the arrangement of right marginal row.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology and infraciliature of a new ciliate, Kiitricha minuta n. sp., isolated from the Yellow Sea, were investigated using live observation and protargol impregnation. Kiitricha minuta represents a third member of the rarely known order Kiitrichida. It is unique in the subclass Hypotrichia in having many rows of small uniform cirri along the right side of the body and the dorsal kineties composed of dikinetids, most of which bear two cilia. Kiitricha minuta n. sp. is ovoid and measures about 60 x 45 mu m in vivo. It has a huge buccal cavity occupying about 80% of the body length, numerous body extrusomes, one macronucleus and two micronuclei, 27-27 adoral membranelles, 9-12 frontoventral cirral rows, a submarginal row of 7-9 cirri, 6 or 7 transverse cirri, and roughly 7-9 dorsal kineties. This new species differs distinctly from its only congener Kiitricha marina by its smaller size (60 mu m vs. 80-150 mu m), the presence of body extrusomes (vs. absent), the different macronuclear pattern (one vs. two nodules), and the lower number of frontoventral cirral rows (9-12 vs. 21-26), which terminate at the anterior two-thirds of body (vs. extend to the posterior). The new term "submarginal cirral row" is introduced to distinguish from the marginal cirral row in typical hypotrichs sensu lato. Based on our new observations and the literature, an improved diagnosis for the genus Kiitricha is provided and its phylogenetic importance is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paraprionospio pinnata (Ehlers, 1901), a poorly known and potentially cosmopolitan polychaete, was examined from museum specimens and from collections in Jiaozhou Bay, the Yellow Sea. New observations indicate that previous Chinese records of P. pinnata are doubtful, and that Chinese waters contain at least three valid species of Paraprionospio, two are known and one is new. Paraprionospio inaequibranchia (Caullery, 1914) and Paraprionospio coora Wilson, 1990, previously misidentified as P. pinnata, are reported from Chinese waters for the first time. Paraprionospio crist'ata. new species, is characterized by having brown pigment patches on the prostomium, ventral crests on chaetigers 9 and 10, dorsal crests on the middle part of the body (from chaetigers 21-23, not beyond chaetiger 29). thin filaments on chaetiger 3, and bifoliate branchial lamellae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavioral and functional imaging studies consistently show that heroin abuse leads to various cognitive impairments, while brain structural changes associated with heroin use remain poorly understood. In the current study, we used voxel-based morphology (VBM), a method sensitive to structural changes of the brain, to investigate the gray concentration in MRI structure images of heroin addicts. Results show that the concentration of the temporal cortex and frontal cortex of heroin users significantly decreased as compared to age/education matched normal controls. Further analysis revealed that this brain structure change was detectable only in the users who had used heroin more than 5 year, but not in the remaining users. These results converge to the abnormality of the brain structure in heroin users and this abnormality is clearly associated with duration of drug use. We then analyzed the large-scale brain structure network in the heroin addicts. As compared to the normal controls, there was significant difference in interregional correlation between the temporal cortex, hippocampus, thalamus, and frontal cortex. Importantly, two major indices of the small-world properties, Clustering coefficient(Cp) and shortest path length (Lp), which are thought to reflect the local specialty and global integrity, were marginal-significantly larger than the normal controls, especially for Lp. These results suggest that chronic use of heroin results in the reorganization of the brain system. Taken together, this thesis has provided compelling evidence for brain structure impairments in chronic heroin users and further characterized the large-scale brain structure network in the same population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress is the most important factor in the vulnerability to depression and other behavioral disorders, but the mechanisms that stress signals are transferred into depression are far from understanding. To date, the neurotransmitters, neurotrophins and signal pathway have been concerned in the topic focusing on the pathophysiology of depression, but there are still many puzzles. Increasing evidence has indicated that the alteration in neuronal plasticity is the “trace” of stress-induced damages. The extracellular signal-regulated protein kinase(ERK)-cyclic-AMP-responsive element(CRE)-binding protein(CREB)signal pathway is a powerful intracellular signal transduction pathway participating in neuronal plasticity which is involved in higher brain cognitive functions such as learning and memory. However, so far, little is known about the role of the ERK-CREB signal pathway in response to stress and emotional modulations. Thus the aim of the study was to systematically investigate the role of the ERK-CEB signal pathway in depressive-like behaviors induced by stress. Depression animal models, antidepressant agent treatment and disruption of signal pathway in specific brain regions were applied. In the present study, three experiment sessions were designed to make sure whether the ERK-CREB signal pathway was indeed one of pathophysiological mechanisms of depressive-like behaviors induced by stress. In experiment one, two different stress animal models were applied, chronic forced swim stress and chronic empty water bottle stress. After stress, all animals were tested behaviorally using open-field, elevated-plus maze and saccharine preference test, and brain samples were processed for determination of ERK, P-ERK, CREB and P-CREB using western blot. The relationships between the proteins of ERK, P-ERK, CREB and P-CREB in the brain and the behavioral variables were also analyzed. In experiment two, rats were treated with antidepressant agent fluoxetine once a day for 21 consecutive days, then the brain levels of ERK, P-ERK, CREB and P-CREB was determined, the depressive-like behaviors were also examined. In experiment three, mitogen activated extracellular-signal-regulated kinase kinase (MEK) inhibitor U0126 was administrated to inhabit the activation of ERK in the hippocampus and prefrontal cortex respectively, then behavioral measurements and protein detection were conducted. The main results of the study were as the following: (1) Chronic forced swim stress induced animals to suffer depression and disrupted the ERK-CREB signal pathway in hippocampus and prefrontal cortex. There were significant correlations between P-ERK2, P-CREB and multiple variables of depressive-like behaviors. (2) Chronic empty water bottle stress did not induce depressive-like behaviors. Such stress decreased the brain level of P-ERK2 in hippocampus and prefrontal cortex, but the level of P-CREB in the hippocampus was increased. (3) The antidepressant agent fluoxetine relieved depressive-like behaviors and increased the activities of the ERK-CREB signal pathway in stressed animals. (4) Animals treated with U0126 injection into hippocampus showed decreased activities of the ERK-CREB signal pathway in the hippocampus, and suffered depression comorbid with anxiety. (5) Animals treated with U0126 injection into prefrontal cortex showed decreased activities of the ERK-CREB signal pathway in the prefrontal cortex, and exhibited depressive-like behaviors. In conclusion, The ERK-CREB signal pathway in the hippocampus and prefrontal cortex was involved in stress responses and significantly correlated with depressive-like behaviors; The ERK-CREB signal pathway in the hippocampus and prefrontal cortex participated in the mechanism that fluoxetine reversed stress-induced behavioral disorders, and might be the target pathway of the therapeutic action of antidepressants; The disruption of the ERK-CREB signal pathway in the hippocampus or prefrontal cortex led to depressive-like behaviors in animals, suggesting that disruption of ERK-CREB pathway in the hippocampus or prefrontal cortex was involved in the pathophysiology of depression, and might be at least one of the mechanisms of depression induced by stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene regulation is required for activity-dependent changes in synaptic plasticity and remodeling. The metabotropic glutamate receptors (mGluRs) contribute to different brain functions, including learning/memory, mental disorders, drug addiction, and persistent pain in the CNS. We found that Gp I mGluRs activate PLCß through Gq and then lead to activation of several calcium-dependent signaling pathways, including ERK, which play an important role in gene transcription. These findings support a calcium-dependent role for Gq in release of Calcium and activation of calcium-stimulated adenylyl cyclases I in activity-dependent transcription in response to application of group I metabotropic glutamate receptors agonist and may provide insights into group I mGluRs-dependent synaptic plasticity through MAP kinases signaling. Moreover, the present study investigated the transcription-dependent changes of Arc in response to the activation of group I mGluRs and suggested the central role of ERK1/2 in group I mGluR-mediated Arc transcription. Further, we selected APP-interaction protein FE65 to investigate the mechanism of transcription-related process in synaptic plasticity. FE65 is expressed predominantly in the brain, and interacts with the C-terminal domain of β-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with the isoform-specific FE65 knock-out (p97FE65-/-) mice. p97FE65 knock-out mice showed impaired short-term memory for both TDPA and CFC when tested 10min after training, which is transcription-independent. Consistently, at the Schaffer collateral-CA1 synapses, p97FE65 knock-out mice showed defective early phase LTP. These results demonstrate novel roles of FE65 in synaptic plasticity, acquisition, and retention for certain forms of memory formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was undertaken to investigate the effect of emotional stress on humoral immunoactivity and to examine whether the sympathetic nervous system was involved in the immunomodulation. In the present study, two types of emotional stressors were used. One was footshock apparatus used to cause the rats which were given footshock before, emotional stressed; the other was an empty water bottle used to cause the rats which were trained to drink water at two set times each day, emotional stressed. The effect of emotional stress on the primary immune function (anti-ovallum antibody level and spleen index), the endocrine response (corticosterone level, epinephrine and norepinephrine level), the behavioral changes (freezing, defecation, grooming and attacking behavior) were investigated. The main results were: 1. Two types of emotional stress significantly increased the level of plasma corticosterone, norepinephrine and epinephrine, as well as freezing, defecation and attacking behavior. 2. Two types of emotional stress significantly decreased the level of anti-ovallum antibody. A negative correlation between catecholamine level (epinephrine and norepinephrine) and antibody level or spleen index was found. 3. β-adrenergic receptor antagonist propranolol could reverse the immunomodulation induced by emotional stress. 4. After two types of emotional stress, c-fos expression was observed in the following brain areas or nucleus; arcuate nucleus, anterior commissure nucleus, diffuse part of dorsalmedial nucleus hypothalamus, lateral dorsal nucleus thalamus, medial nucleus amygdala, solitary nucleus, frontal cortex and cingulum. These brain areas and nucleus are involved in the central modulation of the autonomic nervous system. Taken together, these findings demonstrate that emotional stress can suppress humoral immunity and the activation of the sympathetic nervous system is involved in the humoral immunomodulation induced by emotional stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Credible and stable animal behavioral models are necessary to research the mechanisms of addiction in vivo, especially to study the relationship between memory or stress and drug addiction, which has been one of the focuses in this field. So the object of this study was to observe the influences of several factors on the behavioral effects of morphine shown in the paradigms of conditioned place preference (CPP) and locomotor activity (LA), and to explore the effects of adrenalectomy on LA induced by morphine in rats. In addition, the cortexes of rats were examined, which were exposed to chronic administration of several doses of morphine with or without foot shock. Moreover, a new behavioral model was built to quantify the motivation of drug seeking. The results showed that CPP was more sensitive to low dose of morphine than to high dose. The period of experiment could be shortened by increasing the training times everyday, whereas in this way the dose of morphine should be low enough to avoid the impact between the near two exposures to morphine. Effects of chronic administration of morphine on LA in rats were dose- and time- dependent, which supplied evidence to choose parameters in other behavioral models. The results obtained by the simplified LA paradigm showed that hyperactivity of low dose of morphine following hypoactivity, and naloxone had no effects on LA but blocked the locomotion effects of morphine. Obvious effects of morphine on LA of rats might depend on a reasonable level of plasma corticosterone, which may determine individual vulnerability to drug addiction. Stress may also potentiate the vulnerability by aggravating damage to cortex of rats induced by drug dose-dependently, which is suggested by the results of histological examination. The result that frontal and temporal cortexes and hippocampus were injured suggests that there may be a close relationship between memory and drug addiction. It was showed that the new behavioral model on the basis of Morris water maze might be used to quantify the motivation of drug-craving.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cognition and memory functions of the Basal Ganglia have been the focus of contemporary cognitive neuroscience researches. This study, from neuroanatomical and neurophysiological point of view, thoroughly surveyed the recent relevant research progress, carefully examined the evidences of the neurological basis for the Basal Ganglia possessing or participating cognition or memory functions. Moreover, it reviewed recent achievements on the cognitive functions of the basal ganglia based on researches on rodent animals, primate animals and human beings. Then it presented a series of experiments conducted, by neuropsychological and cognitive psychological methods, on neurological patients with focal lesions to the basal ganglia or combining with bilateral hippocampus or thalamus impaired to explore what the role of the basal ganglia play in human explicit and implicit memory. It was found that the lesions to the basal ganglia partially handicapped explicit verbal memory and completely impaired perceptual priming. It was also found that right cerebral cortex dysplasia but basal ganglia spared had no effects on priming tasks performances. The results suggested that the basal ganglia contain or accommodate higher cognitive functions and further suggested that priming be irrelevant to right cerebral cortex. It was posited that the basal ganglia, on the basis of interaction with prefrontal or temporal cortices, mediate movement function as well as cognition and memory functions.