115 resultados para diagrammi Penrose spaziotempo singolarità estensione soluzione coordinate gravità
Resumo:
Large earthquakes, such as the Chile earthquake in 1960 and the Sumatra-Andaman earthquake on Dec 26, 2004 in Indonesia, have generated the Earth’s free oscillations. The eigenfrequencies of the Earth’s free oscillations are closely related to the Earth’s internal structures. The conventional methods, which mainly focus on calculating the eigenfrequecies by analytical ways, and the analysis on observations can not easily study the whole processes from earthquake occurrence to the Earth’s free oscillation inspired. Therefore, we try to use numerical method incorporated with large-scale parallel computing to study on the Earth’s free oscillations excited by giant earthquakes. We first give a review of researches and developments of the Earth’s free oscillation, and basical theories under spherical coordinate system. We then give a review of the numerical simulation of seismic wave propagation and basical theories of spectral element method to simulate global seismic wave propagation. As a first step to study the Earth’s free oscillations, we use a finite element method to simulate the propagation of elastic waves and the generation of oscillations of the chime bell of Marquis Yi of Zeng, by striking different parts of the bell, which possesses the oval crosssection. The bronze chime bells of Marquis Yi of Zeng are precious cultural relics of China. The bells have a two-tone acoustic characteristic, i.e., striking different parts of the bell generates different tones. By analysis of the vibration in the bell and the spectrum analysis, we further help the understanding of the mechanism of two-tone acoustic characteristics of the chime bell of Marquis Yi of Zeng. The preliminary calculations have clearly shown that two different modes of oscillation can be generated by striking different parts of the bell, and indicate that finite element numerical simulation of the processes of wave propagation and two-tone generation of the chime bell of Marquis Yi of Zeng is feasible. These analyses provide a new quantitative and visual way to explain the mystery of the two-tone acoustic characteristics. The method suggested by this study can be applied to simulate free oscillations excited by great earthquakes with complex Earth structure. Taking into account of such large-scale structure of the Earth, small-scale low-precision numerical simulation can not simply meet the requirement. The increasing capacity in high-performance parallel computing and progress on fully numerical solutions for seismic wave fields in realistic three-dimensional spherical models, Spectral element method and high-performance parallel computing were incorporated to simulate the seismic wave propagation processes in the Earth’s interior, without the effects of the Earth’s gravitational potential. The numerical simulation shows that, the results of the toroidal modes of our calculation agree well with the theoretical values, although the accuracy of our results is much limited, the calculated peaks are little distorted due to three-dimensional effects. There exist much great differences between our calculated values of spheroidal modes and theoretical values, because we don’t consider the effect the Earth’ gravitation in numerical model, which leads our values are smaller than the theoretical values. When , is much smaller, the effect of the Earth’s gravitation make the periods of spheroidal modes become shorter. However, we now can not consider effects of the Earth’s gravitational potential into the numerical model to simulate the spheroidal oscillations, but those results still demonstrate that, the numerical simulation of the Earth’s free oscillation is very feasible. We make the numerical simulation on processes of the Earth’s free oscillations under spherically symmetric Earth model using different special source mechanisms. The results quantitatively show that Earth’s free oscillations excited by different earthquakes are different, and oscillations at different locations are different for free oscillation excited by the same earthquake. We also explore how the Earth’s medium attenuation will take effects on the Earth’s free oscillations, and take comparisons with the observations. The medium attenuation can make influences on the Earth’s free oscillations, though the effects on lower-frequency fundamental oscillations are weak. At last, taking 2008 Wenchuan earthquake for example, we employ spectral element method incorporated with large-scale parallel computing technology to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. Full 3-D visualization of the numerical results displays the profile of the seismic wave propagation with respect to time. The three-point source, which was proposed by the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture processes than one-point source. Primary results show that those synthetic signals calculated from three-point source agree well with the observations. This can further reveal that the source rupturing process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. In conclusion, the numerical simulation can not only solve some problems concluding the Earth’s ellipticity and anisotropy, which can be easily solved by conventional methods, but also finally solve the problems concluding topography model and lateral heterogeneity. We will try to find a way to fully implement self-gravitation in spectral element method in future, and do our best to continue researching the Earth’s free oscillations using the numerical simulations to see how the Earth’ lateral heterogeneous will affect the Earth’s free oscillations. These will make it possible to bring modal spectral data increasingly to bear on furthering our understanding of the Earth’s three-dimensional structure.
Resumo:
Reflectivity sequences extraction is a key part of impedance inversion in seismic exploration. Although many valid inversion methods exist, with crosswell seismic data, the frequency brand of seismic data can not be broadened to satisfy the practical need. It is an urgent problem to be solved. Pre-stack depth migration which developed in these years becomes more and more robust in the exploration. It is a powerful technology of imaging to the geological object with complex structure and its final result is reflectivity imaging. Based on the reflectivity imaging of crosswell seismic data and wave equation, this paper completed such works as follows: Completes the workflow of blind deconvolution, Cauchy criteria is used to regulate the inversion(sparse inversion). Also the precondition conjugate gradient(PCG) based on Krylov subspace is combined with to decrease the computation, improves the speed, and the transition matrix is not necessary anymore be positive and symmetric. This method is used to the high frequency recovery of crosswell seismic section and the result is satisfactory. Application of rotation transform and viterbi algorithm in the preprocess of equation prestack depth migration. In equation prestack depth migration, the grid of seismic dataset is required to be regular. Due to the influence of complex terrain and fold, the acquisition geometry sometimes becomes irregular. At the same time, to avoid the aliasing produced by the sparse sample along the on-line, interpolation should be done between tracks. In this paper, I use the rotation transform to make on-line run parallel with the coordinate, and also use the viterbi algorithm to complete the automatic picking of events, the result is satisfactory. 1. Imaging is a key part of pre-stack depth migration besides extrapolation. Imaging condition can influence the final result of reflectivity sequences imaging greatly however accurate the extrapolation operator is. The author does migration of Marmousi under different imaging conditions. And analyzes these methods according to the results. The results of computation show that imaging condition which stabilize source wave field and the least-squares estimation imaging condition in this paper are better than the conventional correlation imaging condition. The traditional pattern of "distributed computing and mass decision" is wisely adopted in the field of seismic data processing and becoming an obstacle of the promoting of the enterprise management level. Thus at the end of this paper, a systemic solution scheme, which employs the mode of "distributed computing - centralized storage - instant release", is brought forward, based on the combination of C/S and B/S release models. The architecture of the solution, the corresponding web technology and the client software are introduced. The application shows that the validity of this scheme.
Resumo:
To pick velocity automatically is not only helpful to improve the efficiency of seismic data process, but also to provide quickly the initial velocity for prestack depth migration. In this thesis, we use the Viterbi algorithm to do automatic picking, but the velocity picked usually is immoderate. By thorough study and analysis, we think that the Viterbi algorithm has the function to do quickly and effectually automatic picking, but the data provided for picking maybe not continuous on derivative of its curved surface, viz., the curved face on velocity spectrum is not slick. Therefore, the velocity picked may include irrational velocity information. To solve the problem above, we develop a new method to filter signal by performing nonlinear transformation of coordinate and filter of function. Here, we call it as Gravity Center Preserved Pulse Compressed Filter (GCPPCF). The main idea to perform the GCPPCF as follows: separating a curve, such as a pulse, to several subsection, calculating the gravity center (coordinate displacement), and then assign the value (density) on the subsection to gravity center. When gravity center departure away from center of its subsection, the value assigned to gravity center is smaller than the actual one, but non other than gravity center anastomoses fully with its subsection center, the assigned value equal to the actual one. By doing so, the curve shape under new coordinate breadthwise narrows down compare to its original one. It is a process of nonlinear transformation of coordinate, due to gravity center changing with the shape of subsection. Furthermore, the gravity function is filter one, because it is a cause of filtering that the value assigned from subsection center to gravity center is obtained by calculating its weight mean of subsetion function. In addition, the filter has the properties of the adaptive time delay changed filter, owing to the weight coefficient used for weight mean also changes with the shape of subsection. In this thesis, the Viterbi algorithm inducted, being applied to auto pick the stack velocity, makes the rule to integral the max velocity spectrum ("energy group") forward and to get the optimal solution in recursion backward. It is a convenient tool to pick automatically velocity. The GCPPCF above not only can be used to preserve the position of peak value and compress the velocity spectrum, but also can be used as adaptive time delay changed filter to smooth object curved line or curved face. We apply it to smooth variable of sequence observed to get a favourable source data ta provide for achieving the final exact resolution. If there is no the adaptive time delay-changed filter to perform optimization, we can't get a finer source data and also can't valid velocity information, moreover, if there is no the Viterbi algorithm to do shortcut searching, we can't pick velocity automatically. Accordingly, combination of both of algorithm is to make an effective method to do automatic picking. We apply the method of automatic picking velocity to do velocity analysis of the wavefield extrapolated. The results calculated show that the imaging effect of deep layer with the wavefield extrapolated was improved dominantly. The GCPPCF above has achieved a good effect in application. It not only can be used to optimize and smooth velocity spectrum, but also can be used to perform a correlated process for other type of signal. The method of automatic picking velocity developed in this thesis has obtained favorable result by applying it to calculate single model, complicated model (Marmousi model) and also the practical data. The results show that it not only has feasibility, but also practicability.
Resumo:
In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.
Resumo:
Ammonia adsorption studies reveal that the observed Lewis acidity in the zeolite MCM-22 is derived from at least two types of framework aluminum sites (Al(F)), that is, octahedral Al(F) and three-coordinate Al(F). Comparative ammonia or trimethylphosphine (TMP) adsorption experiments with MCM-22 confirm that octahedral Al species gives rise to the signal at delta(ISO) approximate to 0 in the (27)Al NMR spectrum; this is a superposition of two NMR signals from the different Al species on the water-re constructed zeolite surface. A sharp resonance assigned to framework Al reversibly transforms on ammonia adsorption to delta(ISO) (27)Al approximate to 55 from tetrahedral Al(F), while the broad peak is assigned to nonframework aluminium which results from hydrothermal treatment. This study also demonstrates the effectiveness of (27)Al magic angle spinning (MAS) and multiple quantum (MQ) MAS NMR spectroscopy as a technique for the study of zeolite reactions.
Resumo:
The IR spectrum of 4-methyl-3-penten-2-one is interpreted with the aid of normal coordinate calculations within the Onsager self-consistent reaction field (SCRF) model, using a density functional theory (DFT) method at the Becke3LYP/6-31G* level. The solvent effects on the geometry, energy, dipole moment, and vibrational frequencies of 4-methyl-3-penten-2-one in the solution and in the liquid phase are calculated using the Onsager SCRF model. The calculated vibrational frequencies in the liquid-phase are in good agreement with the experimental values. The solvent reaction field has generally weak influence. For the two main bands of C=C and C=O mixed vibrational modes, small frequency shifts (5-6 cm(-1)), but relatively large changes in IR intensities (up to 101 km mol(-1) in the liquid phase) are found. (C) 1999 Elsevier Science BV. All rights reserved.
Resumo:
This thesis has investigated the risk preferences of the Chinese company managers in kinds of simulated decision situations and their perceptions of risk concerning types of business decisions. Four studies are conducted: Study I is utility analysis. 214 company managers and 46 middle - school headmasters have responded to Utility Measurement Survey. The results indicate: (1) The risk preferences of the managers vary in the different decision situations. In most of the situations, most of the managers are risk aversion; In few situations, they are risk-seeking. (2) In some of the decision situations, there are significant differences on risk preference between business managers and school headmasters, male managers and female managers, senior managers and junior managers, managers with high qualifications and managers with low qualifications, non-state-owned firms' managers and state-owned firms' managers, medium-small sized firms' managers and large-sized firms' managers. In the other situations there aren't significant differences between them. (3) In all of the decision situations, so significant differences on risk preference are found among managers with different marriage, experience, age and education. Study II is risky decision simulation. The Risky Decision Situations Simulation Survey is administered to 82 company managers. The result indicates that firm culture, business condition, survival limit and risk preference of the superior influence the managers' risk decision-making behavior. Study III is perceptions of business decision risks. 68 company managers have filled in Decision Cases Risk Perception Inventory. The results indicate: (1) Inaccurate market analysis and prediction, instable politics and the changes of economic policy are the more risky elements to strategy decision. (2) Erroneous market analysis and prediction, appearance of new technology and the changes of market demands are the more risky elements to investment decision. (3) Poor quality control, backward technology and too large stocks are the more risky elements to production decision. (4) Shortage of development fund, wrong choice in development project and limitation of the development ability are the more risky elements to new production development decision. (5) No payment of the foreign partner's capital, the changes of national relevant policy, difficulty in marketing, too high selling prices of foreign partner's equipments are the more risky elements to joint-venture decision. (6) Unfamilarity with oneself and misjudgement in qualification of oneself are the more risky elements to personnel decision. (7) Bad market of the product, defects in product quality and the changes of consumers demands are the more risky elements to marketing decision. (8) Wrong strategy and ambiguous goals are the more risky elements to public relation decision. (9) Violation of the law, ambiguous goals and poor creation are the more risky elements to advertisement decision. (10) Deterioration of diplomatic relations, unsuitable products for foreign consumers and unfamilarity with foreign market are the more risky elements to international business decision. Study IV is structured interview. 5 company managers have answered all questions of the Interview Questionnaire. The results indicate: (1) The managers think that risks are the possible unfavourable consequences of decisions; (2) The self-ratings of the managers coordinate with the results of utility measurement; (3) The managers admit that risks always accompany bussiness decision; (4) Individual difference is found among managers on risk perception. This thesis has also pointed out the important implications of the research and discussed several further questions.
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.
Resumo:
Numerical analysis of fully developed laminar slip flow and heat transfer in trapezoidal micro-channels has been studied with uniform wall heat flux boundary conditions. Through coordinate transformation, the governing equations are transformed from physical plane to computational domain, and the resulting equations are solved by a finite-difference scheme. The influences of velocity slip and temperature jump on friction coefficient and Nusselt number are investigated in detail. The calculation also shows that the aspect ratio and base angle have significant effect on flow and heat transfer in trapezoidal micro-channel. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The acid properties of Mo/HMCM-22 catalyst, which is the precursor form of the working catalyst for methane aromatization reaction, and the synergic effect between Mo species and acid sites were studied and characterized by various characterization techniques. It is concluded that Bronsted and Lewis acidities of HMCM-22 are modified due to the introduction of molybdenum. We suggest a monomer of Mo species is formed by the exchange of Mo species with the Bronsted acid sites. On the other hand, coordinate unsaturated sites (CUS) are suggested to be responsible for the formation of newly detected Lewis acid sites. Computer modelling is established and coupling with experimental results, it is then speculated that the effective activation of methane is properly accomplished on Mo species accommodated in the 12 MR supercages of MCM-22 zeolite whereas the Bronsted acid sites in the same channel system play a key role for the formation of benzene. A much more pronounced volcano-typed reactivity curve of the Mo/HMCM-22 catalysts, as compared with that of the Mo/HZSM-5, with respect to Mo loading is found and this can be well understood due to the unique channel structure of MCM-22 zeolite and synergic effect between Mo species and acid sites.