129 resultados para cultivated tomato
Resumo:
Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400-500 nm), and were lower under red light (600-700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.
Resumo:
Eutrophication is becoming a serious problem in coastal waters in many parts of the world. It induces the phytoplankton blooms including 'Red Tides', followed by heavy economic losses to extensive aquaculture area. Some cultivated seaweeds have very high productivity and could absorb large quantities of N, P, CO2, produce large amount of O-2 and have excellent effect on decreasing eutrophication. The author believes that seaweed cultivation in large scale should be a good solution to the eutrophication problem in coastal waters. To put this idea into practice, four conditions should be fulfilled: (a) Large-scale cultivation could be conducted within the region experiencing eutrophication. (b) Fundamental scientific and technological problems for cultivation should have been solved. (c) Cultivation should not impose any harmful ecological effects. (d) Cultivation must be economically feasible and profitable. In northern China, large-scale cultivation of Laminaria japonica Aresch. has been encouraged for years to balance the negative effects from scallop cultivation. Preliminary research in recent years has shown that Gracilaria lemaneiformis (Bory) Daws. and Porphyra haitanensis Chang et Zheng are the two best candidates for this purpose along the Chinese southeast to southern coast from Fujian to Guangdong, Guangxi and Hong Kong. Gracilaria tenuistipitata var. liui Chang et Xia is promising for use in pond culture condition with shrimps and fish.
Resumo:
Two photoperiodic responses, the development of sporophylls and hairs, have been quantified in sporophytes of the brown alga Undaria pinnatifida. In a final experiment, the algae were cultivated in outdoor, 2000-L seawater tanks in a greenhouse for up to 12 weeks, and daylength was regulated by automatic blinds mounted on top of the tanks. Vegetative young sporophytes were treated under short-day (SD; 8 h light per day) or long-day conditions (LD; 16 h light per day), at 12 h light per day or in a night-break regime (NB; 8 h light per day, 7.5 h dark, 1 h light, 7.5 h dark). The earliest sporophyll development was observed 6, 7 or 9 weeks under LD, NB or SD conditions, respectively. After 12 weeks the sporophylls were significantly longer and wider under LD or NB conditions than in the SD regime, and only half of the experimental algae had formed sporophylls under SD conditions, but all algae under LD or NB conditions. In a foregoing 7-week culture experiment performed in 300-L indoor tanks, enhanced sporophyll formation had also been observed under LD and not under SD conditions (NB omitted). In both experiments, blade elongation rates remained high until the end of the experiments in SD, but declined during sporophyll initiation in LD, NB or at 12 h light per day. Another difference caused by photoperiod was observed in regard to the development of surface hair spots which occurred in both experiments on the blades in LD, NB or at 12 h light per day with identical densities, but were completely lacking under SD conditions. It is concluded that U. pinnatifida is a facultatative long-day plant in regard to reproduction forming vigorously sporophylls in long days, and an obligate long-day plant in regard to hair formation.
Resumo:
Molecular biotechnology of marine algae is referred to as the biotechnology on the identification, modification, production and utilization of marine algal molecules. It involves not only the manipulation of macromolecules such as DNA, RNA and proteins, but also deals with low molecular weight compounds such as secondary metabolites. In the last decade, molecular systematic researches to investigate the relationship and to examine the evolutionary divergence among Chinese marine algae have been carried out by Chinese scientists. For example, RAPD has been widely used in several laboratories to elucidate genetic variations of the reds, such as Porphyra, Gracilaria, Grateloupia and the greens such as Ulva and Enteromorpha. Some important data have been obtained. The study on molecular genetic markers for strain improvement is now in progress. In 1990s, genetic engineering of economic seaweeds such as Laminaria, Undaria, Porphyra, Gracilaria and Grateloupia has been studied in China. For Laminaria japonica, the successfully cultivated kelp in China, a model transformation system has been set up based on the application of plant genetic techniques and knowledge of the algal life history. Progress has been made recently in incorporating a vaccine gene into kelp genome. Evidence has been provided showing the expression of gene products as detectable vaccines. In the present paper, the progress of molecular biotechnological studies of marine algae in China, especially researches on elucidating and manipulating nucleic acids of marine algae, are reviewed.
Resumo:
Undaria cultivation on a commercial scale began in China only in the last decade. Today, Undaria pinnatifida is the main species under cultivation concentrated in two provinces, Liaoning and Shandong. The annual production in the early nineties was 8000-13 000 tons dry weight, which is two or three times the pre-1980 figures. The raft cultivation method maintaining the alga at the desired depths generally ensures the light saturated rate of photosynthesis on clear days, and enhances production. Under the cultivated condition, the calculated annual primary productivity of this alga is 160 g C m(-2) y(-1). Translocation of C-14-labelled photoassimilates in rapidly growing sporophyte of Undaria pinnatifida was studied in the open sea. Samples from different parts of the blade with counterparts exposed to tracer ((NaHCO3)-C-14) showed that the translocation that occurred mainly from the tip of the blade to the growing region had obvious source-sink relationship. It took 20 minutes to translocate the labelled photoassimilates from the epidermis, via cortex, to the medulla of the midrib, where rates of translocation averaging 42-48 cm h(-1) were observed in the open sea. Production experiments of tip-cutting of the blades showed an increased production of 9%.
Resumo:
The effect of simultaneously cultivating the pearl oyster Pinctada martensi and the red alga Kappaphycus alvarezii on growth rates of both species was investigated in laboratory and field studies conducted from December 1993 to June 1995. The two study sites were in subtidal areas 100 km apart off the east coast of Hainan Island, China. Pearl oysters were cultivated in the center of an algal farm and red alga was cultivated in the center of the pearl oyster farm. These field experiments showed higher growth rates of both P. martensi and K. alvarezii in a co-culture system than in a monospecies culture system. Laboratory studies showed that the algae removed nitrogenous wastes released by pearl oysters. Algae treated with pearl oyster wastes grew much faster than those without oyster wastes. Algae treated with the seawater to which NH4Cl, NaNO3 and NaNO2 were added grew at the same rate as those treated with natural seawater containing oyster nitrogenous wastes, suggesting that enhanced growth of algae in the co-culture system was largely due to nitrogenous metabolites of the pearl oysters. In the co-culture, growth of pearl oysters was positively influenced by the presence of rapidly growing algae but when seawater temperature decreased below 20 degrees C, the algae grew slowly and there was no measurable benefit of mixed culture to either algae or pearl oyster.
Resumo:
The free living conchocelis of Porphyra yezoensis Ueda was treated with N-methyl-N-nitro-N-nitrosoguanidine to induce pigmentation mutants. The artificial green pigmentation mutant of P. yezoensis conchocelis, which was composed entirely of green cells, was isolated through visualization with the unaided eye. The acquired green conchocelis was further developed into a green gametophytic blade. This mutant was relatively stable in color in both gametophytic blade and conchocelis phases. The gametophytic blade mutant was successively cultivated for commerce at some Porphyra farms in Rudong, China, and few wild type or sectorially variegated gametophytic blade occurred, indicating that the green mutant has commercial value. The green mutant was characterized as having lower phycoerythrin and higher phycocyanin content, and SDS-PAGE suggested that phycoerythrin was missing the gamma-subunit in comparison to the wild type. The wild type and the green mutant showed a clear difference in 02 evolution rates in white, green, yellow, and red light, which might be due to the qualitative and quantitative changes of phycoerythrin, and the quantitative difference of phycocyanin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bangia fuscopurpurea (Rhodophyta) was cultivated in Putian (Fujian province, China). The characteristics of the life history concerned with cultivation were investigated and the cultivation procedure was presented. The gametophytic phase (thallus) and the sporophytic phase (conchocelis) occurred alternately in the life history of B. fuscopurpurea. Young thalli produced archeospores, and the number depended on the environmental factors. Temperature affected the number of archeospore release and percent of germination, and photo flux density (PFD) mainly affected the time of spore release and germination. Thalli matured from December to February and developed into the conchocelis phase through sexual reproduction. The conchocelis grown in shells had three developmental stages: vegetative conchocelis, conchosporangiall formation and conchospore formation. Pit-connections were present in the first 2 stages but absent after conchospore formation. Vegetative conchocelis and conchosporangial. branches can transform into each other. However, conchospores only developed into the gametophytic phase. Cultivation of B. fuscopurpurea was based on characterization of the life history, consisting of 3 steps: zygotospores collection, indoor cultivation of conchocelis and outdoor cultivation of thalli. Young thalli that developed from conchospores produced numerous archeospores before December. Over 90% of the crop was from the development of archeospores. The results indicated that conchosporelings were a good source of archeospores, and the development of the large quantity of archeospores acted as a more prevailing means to increase the population size. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chondrus is a type of commercially produced red seaweed that widely used for food and carrageen extraction. Although the natural life history of the alga had been well understood, the factors influencing development of the tetraspore and carpospore remain poorly understood. In the perspective of seedling resources, the regulation of early development is crucial for the seedling nursing; therefore, it is necessary to understand the physiological influences during its early development. In this study, we studied the effects of temperature and irradiance on the early development of Chondrus ocellatus Holm under laboratory conditions. The released tetraspores and carpospores were cultivated at different temperatures (10-28 degrees C) and irradiances ( 10, 60 mu mol photons m(-2)s(-1)) with a photoperiod of 12L:12D. The results indicate that both tetraspores and carpospores are tolerant to temperatures of 10-25 degrees C, and have the highest relative growth rate at 20 degrees C. Irradiance variances influenced the growth of the discoid crusts, and the influence was more significant with increasing temperature; 60 mu mol photons m(-2)s(-1) was more suitable than 10 mu mol photons m(-2)s(-1). The optimum temperature and irradiance for the development of seedlings was 20 degrees C and 60 mu mol photons m(-2)s(-1), respectively.
Resumo:
Inter-simple sequence repeat (ISSR) analysis was used to assess eleven pairs of Undaria pinnatifida (Harv.) Suringar male and female gametophytes. After screening fifty primers, 18 ISSR primers were selected for final analysis. A total of 104 loci were obtained, of which 77 were polymorphic, among the gametophytes studied. Genetic relationships were analyzed with simple matching (S), Jaccard's (J) and Dice's (D) distance coefficients. Little genetic variations were found among the selected Undaria gametophytes, for instance, the genetic distances ranging from 0.010 to 0.125 with Dice coefficients. UPGMA dendrograms showed that 11 pairs of Undaria gametophytes were distributed into five groups. Most Undaria strains cultivated in China exhibited closely genetic relationships with the strains from Japan. However, gametophytes from Qingdao appeared as distinct clades from other Undaria strains with all three distance coefficients used. Mantel test showed that the three distance measurements generated congruent clustering patterns on the same data. Our results demonstrated the feasibility of applying ISSR markers for genetic analysis of Undaria gametophytes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gracilaria lemaneiformis (Bory) Daws has been extensively cultivated as a source of commercial agar and the ecomaterials in Shenao Bay, Guangdong Province, Jiaozhou Bay, Shandong Province and other waters in China. This paper examines the in situ suspended farming of G. lemaneiformis using raft cultivation under different conditions and its effects on nutrient removal in the laboratory. The results showed that cultivated Gracilaria grew well in both Shenao Bay and Jiaozhou Bay. The biomass of Gracilaria increased from 50 to 775 g m(-1) (fresh weight) during 28 days, with special growth rate (SPG) 13.9% d(-1) under horizontal cultivation in Jiaozhou Bay. Light, temperature, nutrient supply, as well as cultivation treatments such as initial density, and depth of suspension seaweed were important to the growth of Gracilaria. The highest biomass production was observed in the horizontal culture condition (0.0 m) and 0.5-1.5 m deep layer in Jiaozhou Bay. However, the highest growth rate in Shenao Bay appeared under the lowest initial stocking density treatment. In the laboratory, the aquarium experiments (fish and seaweed culture systems) demonstrated that Gracilaria was able to remove inorganic nutrients effectively. The concentration of NH4+-N decreased by 85.53% and 69.45%, and the concentration of PO4-P decreased 65.97% and 26.74% in aquaria with Gracilaria after 23 days and 40 days, respectively. The results indicate that Gracilaria has the potential to remove excess nutrient from coastal areas, and the large-scale cultivation of G. lemaneiformis could be effective to control eutrophication in Chinese coastal waters. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Protease-producing bacteria are known to play an important role in degrading sedimentary particular organic nitrogen, and yet, their diversity and extracellular proteases remain largely unknown. In this paper, the diversity of the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea was investigated. The richness of the cultivable protease-producing bacteria reached 10(6) cells/g in all sediment samples. Analysis of the 16S rRNA gene sequences revealed that the predominant cultivated protease-producing bacteria are Gammaproteobacteria affiliated with the genera Pseudoalteromonas, Alteromonas, Marinobacter, Idiomarina, Halomonas, Vibrio, Shewanella, Pseudomonas, and Rheinheimera, with Alteromonas (34.6%) and Pseudoalteromonas (28.2%) as the predominant groups. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria are serine proteases or metalloproteases. Moreover, these proteases have different hydrolytic ability to different proteins, reflecting they may belong to different kinds of serine proteases or metalloproteases. To our knowledge, this study represents the first report of the diversity of bacterial proteases in deep-sea sediments.
Resumo:
In this study the red alga, Gracilaria lemaneiformis, was cultivated with the scallop Chlamys farreri in an integrated multi-trophic aquaculture (IMTA) system for 3 weeks at the Marine Aquaculture Laboratory of the Institute of Oceanology, Chinese Academy of Sciences (IOCAS) in Qingdao, Shandong Province, North China. The nutrient uptake rate and nutrient reduction efficiency of ammonium and phosphorus from scallop excretion were determined. The experiment included four treatments each with three replicates, and three scallop monoculture systems served as the control. Scallop density (407.9 +/- 2.84 g m(-3)) remained the same in all treatments while seaweed density differed. The seaweed density was set at four levels (treatments 1, 2, 3, 4) with thallus wet weight of 69.3 +/- 3.21, 139.1 +/- 3.80, 263.5 +/- 6.83, and 347.6 +/- 6.30 g m(-3), respectively. There were no significant differences in the initial nitrogen and phosphorus concentration between each treatment and the control group (ANOVA, p > 0.05). The results showed that at the end of the experiment, the nitrogen concentration in the control group and treatment 1 was significantly higher than in the other treatments. There was also a significant difference in phosphorus concentration between the control group and the IMTA treatments (ANOVA, p < 0.05). Growth rate, C and N content of the thallus, and mortality of scallop was different between the IMTA treatments. The nutrient uptake rate and nutrient reduction efficiency of ammonium and phosphorus changed with different cultivation density and time. The maximum reduction efficiency of ammonium and phosphorus was 83.7% and 70.4%, respectively. The maximum uptake rate of ammonium and phosphorus was 6.3 and 3.3 A mu mol g(-1) DW h(-1). A bivalve/seaweed biomass ratio from 1:0.33 to 1:0.80 (treatments 2, 3, and 4) was preferable for efficient nutrient uptake and for maintaining lower nutrient levels. Results indicate that G. lemaneiformis can efficiently absorb the ammonium and phosphorus from scallop excretion and is a suitable candidate for IMTA.
Resumo:
Experiments on growth characters and ecological functions of the macroalgae Gracilaria lemaneiformis, collected from south China, were conducted in polyculture areas of kelp and filter-feeding bivalve in Sanggou Bay in Weihai City, Shandong, in north China from May 2002 to May 2003. The results of 116 days cultivation showed that the average wet weight of alga increased 89 times from 0.1 to 8.9 kg rope(-1), with an average specific growth rate ( based on wet weight) of 3.95% per day. The most favorable water layer for its growth was 1.0 - 1.8 m below the surface in July and August, with an average specific growth rate of 8.2% per day in 30-day experiments. Photosynthetic activity changed seasonally, with an average of 7.3 mg O-2 g dw(-1) h(-1). The maximum rate (14.4 mg O-2 g dw(-1) h(-1)) was recorded in July, or 19.3 mg CO2 g dw(-1) h(-1), while the minimum (0.40 mg CO2 g dw(-1) h(-1)) was in April. This study indicated that the culture of G. lemaneiformis is an effective way to improve water quality where scallops are cultivated intensively.
Resumo:
Fed fish farms produce large amounts of wastes, including dissolved inorganic nitrogen and phosphorus. In China, fish mariculture in coastal waters has been increasing since the last decade. However, there is no macroalgae commercially cultivated in north China in warm seasons. To exploit fish-farm nutrients as a resource input, and at the same time to reduce the risk of eutrophication, the high-temperature adapted red alga Gracilaria lemaneiformis (Bory) Dawson from south China was co-cultured with the fish Sebastodes fuscescens in north China in warm seasons. Growth and nutrient removal from fish culture water were investigated in laboratory conditions in order to evaluate the nutrient bioremediation capability of G. lemaneiformis. Feasibility of integrating the seaweed cultivation with the fed fish-cage aquaculture in coastal waters of north China was also investigated in field conditions. Laboratory seaweed/fish co-culture experiments showed that the seaweed was an efficient nutrient pump and could remove most nutrients from the system. Field cultivation trials showed that G. lemaneiformis grew very well in fish farming areas, at maximum growth rate of 11.03% day(-1). Mean C, N, and P contents in dry thalli cultured in Jiaozhou Bay were 28.9 +/- 1.1%, 4.17 +/- 0.11 % and 0.33 +/- 0.01 %, respectively. Mean N and P uptake rates of the thalli were estimated at 10.64 and 0.38 mu mol g(-1) dry weight h(-1), respectively. An extrapolation of the results showed that a 1-ha cultivation of the seaweed in coastal fish fanning waters would give an annual harvest of more than 70 t of fresh G. lemaneiformis, or 9 t dry materials; 2.5 t C would be produced, and simultaneously 0.22 t N and 0.03t P would be sequestered from the seawater by the seaweed. Results indicated that the seaweed is suitable as a good candidate for seaweed/fish integrated mariculture for bioremediation and economic diversification. The integration can benefit economy and environment in a sustainable manner in warm seasons in coastal waters of north China. (c) 2005 Elsevier B.V. All rights reserved.