142 resultados para carbon nanotubes forest densification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 muL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized. (C) 2004 American Society for Mass Spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized carbon nanotubes are tested as a matrix for analysis of small molecules by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Compared with nonoxidized carbon nanotubes, oxidized carbon nanotubes facilitate sample preparation because of their higher solubility in water. The matrix layer of oxidized carbon nanotubes is much more homogeneous and compact than that of nonoxidized carbon nanotubes. The efficiency of desorption/ionization for analytes and the reproducibility of peak intensities within and between sample spots are greatly enhanced on the surface of oxidized carbon nanotubes. The advantage of the oxidized carbon nanotubes in comparison with alpha-cyano-4-hydroxycinnamic acid (CCA) and carbon nanotubes is demonstrated by MALDI-TOF-MS analysis of an amino acid mixture. The matrix is successfully used for analysis of synthetic hydroxypropyl P-cyclodextrin, suggesting a great potential for monitoring reactions and for product quality control. Reliable quantitative analysis of jatrorrhizine and palmatine with a wide linear range (1-100 ng/mL) and good reproducibility of relative peak areas (RSD less than 10 %) is achieved using this matrix. Concentrations of jatrorrhizine (8.65 mg/mL) and palmatine (10.4 mg/mL) in an extract of Coptis chinensis Franch are determined simultaneously using the matrix and a standard addition method. (c) 2005 American Society for Mass Spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for environmental analysis has been mainly focused on qualitative analysis of high-mass molecules, such as toxins, humic acid, and microorganisms. Herein,we describe a novel MALDI-TOF-MS method with a matrix of oxidized carbon nanotubes for analysis of low-mass compounds in environmental samples. A number of chemicals in the environment were qualitatively analyzed by the present method, and it was found that most of them, especially the highly polar chemicals, were measurable with high sensitivity. With the intrinsic ability to measure high-mass chemicals, this method can compensate for the current shortage of methods for environmental analysis for the measurement of highly polar or high-mass chemicals. For sample analysis, arsenic speciation in Chinese traditional medicines was qualified and diphenylolpropane in water samples was quantified. With the relatively high tolerance of the method to interfering molecules, a simple pretreatment or even no pretreatment could be employed before MS detection. Furthermore, this method can be employed in a high-throughput format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to investigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the theoretical analysis based on an elastic column model is carried out. Two ratios, I.e., the ratio of half wall thickness to radius (t=R) and the ratio of gravity to elastic resilience ($\rho$gR=E), and their influences on the ratio of critical length to radius are discussed. It is found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately linear. As the dimensionless number $\rho$gR=E increases, the compressive force per unit length (weight) becomes larger, thus critical ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results of this paper will be helpful for the stability design of nanotweezers-like nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An aromatic polyimide and its mixture with randomly distributed carbon nanotubes (NTs) are simulated by using molecular dynamics, repeated energy minimization and cooling processes. The glass transition temperatures are identified through volume-temperature curves. Stress-strain curves, Young's moduli, densities and Poisson ratios are computed at different temperatures. It is demonstrated that the carbon NT reduces the softening effects of temperature on mechanical properties and increases the ability to resist deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tribological properties of the high-strength and high-modulus ultrahigh molecular weight polyethylene (UHMWPE) film and the UHMWPE composites reinforced by multiwalled carbon nanotubes (MWCNT/UHMWPE) were investigated using a nanoindenter and atomic force microscope (AFM). The MWCNT/UHMWPE composites films exhibited not only high wear resistance but also a low friction coefficient compared to the pure UHMWPE films. We attribute the high wear resistance to the formation of the new microstructure in the composites due to the addition of MWCNTs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs), due to their exceptional magnetic, electrical and mechanical properties, are promising candidates for several technical applications ranging from nanoelectronic devices to composites. Young's modulus holds the special status in material properties and micro/nano-electromechanical systems (MEMS/NEMS) design. The excellently regular structures of CNTs facilitate accurate simulation of CNTs' behavior by applying a variety of theoretical methods. Here, three representative numerical methods, i.e., Car-Parrinello molecular dynamics (CPMD), density functional theory (DFT) and molecular dynamics (MD), were applied to calculate Young's modulus of single-walled carbon nanotube (SWCNT) with chirality (3,3). The comparative studies showed that the most accurate result is offered by time consuming DFT simulation. MID simulation produced a less accurate result due to neglecting electronic motions. Compared to the two preceding methods the best performance, with a balance between efficiency and precision, was deduced by CPMD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthalocyanine-sensitized multi-walled carbon nanotube (NaPc-MWNT) composites have been synthesized through the pi-stacking between naphthalocyanine (NaPc) and carbon nanotubes. The resultant nanocomposites were characterized with a scanning electron microscope (SEM), a transmission electron microscope (TEM), and by UV - vis absorption and photocurrent spectra. The long-range ordering was observed in the NaPc - MWNT composites by using a TEM. The enhancement in the absorption intensity and the broadening of the absorption wavelength observed in the composite films, which were due to the attachment of NaPc on the MWNT surface, is discussed based on the measured UV - vis absorption spectra. Furthermore, the photoconductivity of the poly( 3-hexylthiophene)(PAT6) - NaPc - MWNT composite film was found to increase remarkably in the visible region and broaden towards the red regions. These new phenomena were ascribed to the larger donor/acceptor (D/A) interface and the formation of a biconsecutive D/A network structure, as discussed in consideration of the photoinduced charge transfer between PAT6 and NaPc - MWNT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the chirality dependence of physical properties of nanotubes which are wrapped by the planar hexagonal lattice including graphite and boron nitride sheet, and reveal its symmetry origin. The observables under consideration are of scalar, vector, and tensor types. These exact chirality dependences obtained are useful to verify the experimental and numerical results and propose accurate empirical formulas. Some important features of physical quantities can also be extracted by considering the symmetry restrictions without complicated calculations.