320 resultados para calorimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical and thermal properties of glass bead-filled nylon-6 were studied by dynamic mechanical analysis (DMA), tensile testing, Izod impact, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) tests. DMA results showed that the incorporation of glass beads could lead to a substantial increase of the glass-transition temperature (T-g) of the blend, indicating that there existed strong interaction between glass beads and the nylon-6 matrix. Results of further calculation revealed that the average interaction between glass beads and the nylon-6 matrix deceased with increasing glass bead content as a result of the coalescence of glass beads. This conclusion was supported by SEM observations. Impact testing revealed that the notch Izod impact strength of nylon-6/glass bead blends substantially decreased with increasing glass bead content. Moreover, static tensile measurements implied that the Young's modulus of the nylon-6/glass bead blends increased considerably, whereas the tensile strength clearly decreased with increasing glass bead content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By adding a small amount of multiwall carbon nanotubes (MWNTs) to polyethylene oxide (PEO) and a salt system, a new type of nanocomposite film was constructed. At ambient temperature, the conductivity of the PEO-salt-0.5 wt % MWNTs was nearly three orders of magnitude higher than that of the PEO-salt system. The conductive property of the nanocomposite film was characterized by ac impedance and the differential scanning calorimetry technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure and liquid crystalline properties of a biphenyl-containing acetylene, [5-[(4'-heptoxy-4- biphenylyl) carbonyloxy]-1-pentyne (A3EO7) were investigated by electron crystallography, X-ray diffraction, polarizing optical microscopy, differential scanning calorimetry, transmission electron microscopy, and atomic force microscopy. A3EO7 crystals obtained from a toluene solution adopts a monoclinic P112/m space group with unit cell parameters of a = 6.25 Angstrom, b = 7.82 Angstrom, c = 46.70 Angstrom and gamma = 96.7degrees, as determined using electron diffraction. Upon cooling from the isotropic phase, A3EO7 exhibits a smectic A phase in the temperature range 72.4 - 53.6degreesC. Further lowering of the temperature results in the formation of a smectic C phase which exhibits a strong tendency towards crystallization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The liquid crystalline properties of a mesogenic poly(1-alkyne) and the corresponding monomer were studied using transmission electron microscopy, X-ray diffraction, polarizing optical microscopy and differential scanning calorimetry. The monomer exhibits a monotropic smectic A phase and a metastable crystalline phase. The rigid polymer backbones do not prevent the mesogenic moieties from packing into smectic A and B phases in the temperature ranges 127.6 - 74.1degreesC and 74.1degreesC - room temperature, respectively, on cooling from the isotropic melt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallization behavior of two polypropylene (PP) resins as used for biaxially oriented polypropylene (BOPP) and general injection mold applications, respectively, has been intensively investigated and compared by means of polarized light optical micrography (POM), differential scanning calorimetry (DSC), conventional transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). It is found that both molecular weight distribution and isotacticity of polypropylene strongly affect its crystallization characteristics, e.g., the number of crystal nuclei at the initial stage, crystallization dynamics, the morphology, size and perfection of crystals in the final product, and so on. The results indicate an appropriate molecular structure is vital in producing high-quality BOPP film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of poly(ether-sulfone) (PES) and poly(phenylene sulfide) (PPS) with various compositions were prepared using an internal mixer at 290degreesC and 50 rpm for 10 min. The thermal and dynamic mechanical properties of PES/PPS blends have been investigated by means of DSC and DMA. The blends showed two glass transition temperatures corresponding to PPS-rich and PES-rich phases. Both of them decreased obviously for the blends with PES matrix. On the other hand, T-g of PPS and PES phase decreased a little when PPS is the continuous phase. In the blends quenched from molten state the cold crystallization temperature of PPS was detected in the blends of PES/PPS with mass ratio 50/50 and 60/40. The melting point, crystallization temperature and the crystallinity of blended PPS were nearly unaffected when the mass ratio of PES was less than 60%, however, when the amount of PES is over 60% in the blends, the crystallization of PPS chains was hindered. The thermal and the dynamic mechanical properties of the PPS/PES blends were mainly controlled by the continued phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites based on poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and multi-walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer-coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was irradiated by Co-60 gamma-rays (doses of 50, 100 and 200kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one-step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight-loss step change. The onset degradation temperature (T-o) and the temperature of maximum weight-loss rate (T-p) of control and irradiated PHBV were in line with the heating rate (degreesC min(-1)). T-o and T-p of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that Co-60 gamma-radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (T-m) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new composite proton exchange membranes for direct methanol fuel cells (DMFCs) based on poly (vinyl alcohol) (PVA), phosphotungstic acid (PWA) and silica were prepared. The highest proton conductivity (a) of these membranes is 0.017 S/cm at ambient temperature. The methanol permeability (D) of these composite membranes ranges from 10(-7) to 10(-8) cm(2)/S. From the ratios of sigma/D, it was found that the optimal weight composition of the PVA/PWA/SiO2 membrane is PVA/PWA/SiO2=0.40:0.40:0.20 wt. Infrared (IR) spectrographic measurements indicate that the Keggin structure characteristics of the PW12O403- anion is present in the composite membranes. Cyclic voltammetry shows that the electrochemical stability window of the complex membrane is from -0.5 to 1.5 V vs. Ag/AgCl electrode. The results of differential scanning calorimetry (DSC) show that silica can improve the thermal stability of the complexes and the single Tg of the membrane indicates that the membrane is homogeneous. The complexes behave as X-ray amorphous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crystallization behavior, structural development and morphology evolution in a series of diblock copolymers Of poly(L-lactide)-blockpoly(ethylene glycol) (PLLA-b-PEG) were investigated via differential scanning calorimetry, wide-angle X-ray diffraction, polarized optical microscopy and atomic force microscopy. In these copolymers, both blocks are crystallizable and biocompatible. It was interesting that these PLLA-b-PEG diblock copolymers could form spherulites with banded textures, which was undercooling dependent. Single crystals with an abundance of screw dislocations were also observed via AFM. Such results indicated that these ringed spherulites and single crystals were formed during the crystallization of the PLLA blocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal and crystalline properties of random copolymer of epsilon-caprolactone (CL) and 2,2-dimethyl trimethylene carbonate (DTC) prepared by lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) (La(OAr)(3)) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and wide-angle X-ray diffraction (WAXD). Fox equation interprets the relationship between glass transition temperature (T-g) and copolymer compositions. T-g decreases from PDTC (16.7degreesC) to PCL (-65.1degreesC), reflecting the internal plasticizing effect of CL units on DTC units in the copolymers. The introduction of CL units to PDTC can effectively improve its heat resistance. Small amount of DTC (5% molar) in PCL chain improves the mechanical properties of the polymer, which had elongation of 1000, much higher than that of PCL (8.8).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the context of the flanking sequence on ligand binding to DNA oligonucleotides that contain consensus binding sites was investigated for the binding of the intercalator 7-amino actinomycin D. Seven self-complementary DNA oligomers each containing a centrally located primary binding site, 5'-A-G-C-T-3', flanked on either side by the sequences (AT)(n) or (AA)(n) (with n = 2, 3, 4) and AA(AT)(2), were studied. For different flanking sequences, (AA)(n)-series or (AT)(n)-series, differential fluorescence enhancements of the ligand due to binding were observed. Thermodynamic studies indicated that the flanking sequences not only affected DNA stability and secondary structure but also modulated ligand binding to the primary binding site. The magnitude of the ligand binding affinity to the primary site was inversely related to the sequence dependent stability. The enthalpy of ligand binding was directly measured by isothermal titration calorimetry, and this made it possible to parse the binding free energy into its energetic and entropic terms.