134 resultados para butyl nitrobenzoates
Resumo:
The present paper reports a study of the extraction of HNO3 with Cyancx923 (C923)-n-heptane. A third phase appears at different aqueous HNO3 concentrations for various initial C923 concentrations. Data analysis indicates that almost all of HNO3 and H2O are extracted into the middle phase. More HNO3 and water at a fixed ratio are solubilized in the reverse micelles or microemulsion in the third phase, which leads to a sharp increase of their concentration. The effect of temperature on the phase behavior of the three-phase system has also been investigated.
Resumo:
Phase behavior of the extraction system, Cyanex 923-heptane/Ce4+-H2SO4 has been studied and compared with Cyanex 923-heptane/H2SO4 System. Cerium(IV) is mainly extracted into the third phase, and its concentration in the third phase first increases with the increasing aqueous acid concentration, reaches maximum and then decreases. At higher acidity, cerium(IV) is hardly extracted in the third phase. The phase behavior and change of the contents of acid and water are similar to those in the acid system. The acid concentration increases with increase of the aqueous acid in the whole extraction region while the water content first decreases with it and then increases after the third phase formation. The third phase has a characteristic lamellar structure formed by the aggregates of Cyanex 923 (.) (H2SO4)(2) (.) H2O as those in the case of acid system. The third phase loaded Ce(IV) has been used to prepare ultrafine CeO2 powder conveniently by precipitation with oxalic acid, and powders with size mostly smaller than 100 nm can be obtained.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
By screening the phage-displayed human single chain antibody library, we have got the specific single chain antibody bound to GSH-S-DNP butyl ester as the hapten. The tertiary structure of the protein was analyzed with the aid of computer, and the results showed the CDR3 region located on the surface of the antibody. The soluble antibody was expressed in E. coli. and the active site serine was converted into selenocysteine with the chemical modifying method, which resulted in the catalytic antibody with GPx activity of 80 U/mu mol. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody was studied.
Resumo:
Transition of crystalline structure and morphology of metallocene-catalyzed butyl branched polyethylene with branch content has been studied. It was found that the long periods of the branched polyethylene were controlled by crystallization conditions for the lower branch content samples and by branch contents for the higher branch content samples. When the branch content increased to a critical value the branched polyethylene had no long period because the crystalline morphology was changed from folded chain crystal to a bundled crystal. The TEM observations supported the results. The transition of the crystalline morphology resulted from the reduction of lamellar thickness with increasing of branch content since the branches were rejected from the lattice. The reduction of lamellar thickness with increasing of branch content also resulted in lattice expansion and decrease of melt temperature of the branched polyethylene. (C) 2001 Kluwer Academic Publishers.
Resumo:
The half-sandwich tert-butyl cyclopentadienyl lanthanoid complexes {[Cp ' Ln(THF)](2)(mu (2)-Cl)(2)(mu (3)-Cl)(3)Na(THF)}(n) [Cp ' = eta (5)-' BuC5H4; Ln = Nd (1a), Sm (1b), Gd (1c), Yb (1d)] are prepared by the reaction of anhydrous lanthanoid trichloride, LnCl(3), with NaCp ' in THF solution. Complex 1b reacts with Na2Se5 to give hexanuclear samarium polyselenide complexes [Na(THF)(6)](2)[Cp-6' SM6(mu (6)-Se)(mu -Se-2)(6)] (2). An analogous cyclopentadienyl neodymium polyselenide complex [Li(THF)(4)](2)[Cp6Nd6(mu (6)-Se)(mu -Se-2)(6)] (3) is synthesized by the reaction of [CpNdCl2. 2LiCl . 5THF] with Na2Se5 in THF solution. The molecular structures of 1a and 2 were determined by X-ray crystal structure analysis. Complex 2 contains an interstitial selenium atom which is coordinated with six samarium atoms. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
In order to generate catalytic antibodies with glutathione peroxidase (GPx) activity, we prepared GSH-S-DNP butyl ester and GSH-S-DNP benzyl ester as the haptens. Two ScFvs that bound specifically to the haptens were selected from the human phage-displayed antibody library. The two ScFv genes were highly homologous, consisting of 786 bps and belonging to the same VH family-DP25. In the premise of maintaining the amino acid sequence, mutated plasmids were constructed by use of the mutated primers in PCR, and they were over-expressed in E. coli. After the active site serine was converted into selenocysteine with the chemical modifying method, we obtained two human catalytic antibodies with GPx activity of 72.2U/mu mol and 28.8U/mu mol, respectively. With the aid of computer mimicking, it can be assumed that the antibodies can form dimers and the mutated selenocysteine residue is located in the binding site. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody with the higher activity was studied. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
The thermooxidative degradtion of ethylene oxide and tetra-hydrofuran (EO-THF) co-polyether has been studied by electron spin resonance (ESR), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. The initial degradation site was found to be at the a-carbon of the ether bond. Two free radicals which derived from dehydrogenation and oxygen addition were successfully detected by spin-trapping technique which used alpha -phenyl-N-tert-butyl nitrone(PBN) as spin trap. Both FT-IR and NMR have been used to follow structural changes of the copolyether during degradation. Nearly 20 product fragments including formate, carbonate, methyl, alcohol, methylene-dioxy, hydroperoxide and semiformal have been characterized by D-1 and D-2 NMR. The thermooxidtion of co-polyether preferred to occur on the THF units especially at the alternating linkage of EO and THF. Antioxidant (BHT) not only retarded the thermooxidation but also modified the degradation products with less ester and methylene-dioxy groups hut more hydroxyl and methyl groups.
Resumo:
Series of thermotropic liquid crystalline poly (aryl ether ketone) s were synthesized by mucleophilic substitution reactions of 4,4'-biphenol and substituted hydroquinone with different difluoromonomers, The relationship between structure and properties of the novel copolymers was investigated. For the copolymers with liquid crystalline properties, their melting transition temperatures show no great change with increase the content of the crystal-disrupting unit. The reason is that the crystal phase is directly transformed from the ordered liquid crystal phase. Side-groups have important effect on mesophase stability, The temperature range of mesophase stability for the chloro-polymers is smaller than those of other series of copolymers (P-phenyl, t-butyl, methoxy, 3-trifluoromethylbenzene). This behavior indicates that the effect of geometric repulsive factor on the thermodynamic stability of the mesophase is much larger than that of the polarizability attractive factor. Different ordered liquid crystal phases are observed in the polymers with different molecular weights. At low molecular weight, highly ordered smectic liquid crystal phases form. With increasing the molecular weight, the ordered degree of the liquid crystals decreases, and only the nematic liquid crystal phase is observed in the polymer with higher molecular weight.
Resumo:
Self-assembled monolayers(SAMs) of trichlorogermanyl propanoic acid derivatives on hydroxylated silicon substrates are prepared for the first time. Contact angle measurement, ellipsometry and X-ray photoelectron spectrometry(XPS) are used to characterize these SAMs, It is demonstrated that a quasi-2D network is formed on the surface of the substrate after molecules adsorbed on it. The molecular chains have certain tilt angles to the substrate surface, The wettabilities of the SAMs are various,because the molecules adsorbed and liquids used in the experiments are different. It can be concluded that trichlorogermanes have similar self-assembly behavior as trichlorosilanes, Four SAMs are studied together: they are acid, ethyl, butyl and hexyl surfaces whose results are of good consistency.
Resumo:
The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.
Resumo:
The miscibility of blends of poly(styrene-co-allyl alcohol) (SAA) with poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), poly(n-butyl methacrylate) (PnBMA), poly-epsilon-caprolactone (PCL) or polycarbonate (PC) has been studied by means of NMR, FT-IR and DSC techniques. It was found that SAA and PMMA, PEMA or PCL form miscible blends and SAA is only partially miscible with PC or PnBMA. Both phenyl groups and hydroxyl groups in SAA are involved in the intermolecular interactions between SAA and PMMA, PEMA or PCL. Also the hydroxyl-carbonyl hydrogen bonds existing in all the miscible blends studied are formed partially at the expense of the disruption of self-association of hydroxyl groups in pure SAA. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Polycarbonate (PC) and a core-shell latex polymer composed of poly(butyl acrylate) and poly(methyl methacrylate) (PBA-cs-PMMA) as core and shell, respectively, were mixed using a Brabender-like apparatus under different conditions. The mechanical properties, the morphology and the processability of the blends were investigated. Because of the good compatibility of PC and PMMA, even dispersion of PBA-cs-PMMA in PC matrix and good adhesion between the components have been achieved. PBA-cs-PMMA is thus a very good impact modifier for PC. The toughening mechanism is both cavitation and shear yielding, as indicated by SEM observation. (C) 1997 Elsevier Science Ltd.
Resumo:
The thermal properties and crystalline structure of the amphiphilic graft copolymers CR-g-PEG600, CR-g-PEG2000, and CR-g-PEG6000 using chloroprene rubber (CR) as the hydrophobic backbone and poly(ethylene glycol) (PEG) with different molecular weights as the hydrophilic side chains were studied by DSC and WAXD. The results showed that a distinct phase-separated structure existed in CR-g-PEGs because of the incompatibility between the backbone segments and the side-chain segments. For all the polymers studied, T-m2, which is the melting point of PEG crystalline domains in CR-g-PEG, decreased compared to that of the corresponding pure PEG and varied little with PEG content. For CR-g-PEG600 and CR-g-PEG2000, T-m1, which is the melting point of the CR crystalline domains, increased with increasing PEG content when the PEG content was not high enough, and at constant PEG content, the longer were the PEG side chains the higher was the T-m1. The crystallite size L-011 of CR in CR-g-PEGs increased compared to that of the pure CR and decreased with increasing PEG content. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of vinylidene chloride (VDC) copolymers with methyl acrylate (MA) or butyl acrylate (BA) as comonomer (not more than 10%) was prepared by free-radical suspension copolymerization. The effects of comonomer structure, copolymer composition, and reaction condition (such as polymerization temperature on crystallinity) and thermal properties (such as melting temperature and decomposition temperature) were investigated. All VDC/acrylics copolymers studied here are semicrystalline and have more than one crystalline structure. The melting temperature of MA/VDC copolymers is decreased progressively with increase in MA content. The decomposition temperature of MA/VDC copolymers is slight increased gradually with increase in MA content. MA/VDC copolymers have lower melting temperature compared with BA/VDC copolymers with same VDC composition. The melting temperature of VDC copolymers increases with increase in polymerization temperature and decomposition temperature of those is almost independent of polymerization temperature. (C) 1996 John Wiley & Sons, Inc.