556 resultados para annealing Al2O3


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of the post-growth rapid thermal annealing on optical and electrical properties of InAs/InAlAs/InP quantum wires with various InAs deposited thickness. Quite different annealing behaviors in photoluminescence and dark resistance are observed, which can be attributed to dislocations in samples. After annealing at 800 degrees C, quantum wires still exist in the sample with two monolayer InAs deposited thickness, but the temperature-dependent PL properties are changed greatly due to the intermixing of In/Al atoms. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy technique has been performed to investigate the stress induced in as-grown silicon-on-sapphire (SOS), solid-phase-epitaxy (SPE) re-grown SOS, and Si/gamma-Al2O3/Si double-heteroepitaxial thin films. It was demonstrated that the residual stress in SOS film, arising from mismatch and difference of thermal expansion coefficient between silicon and sapphire, was reduced efficiently by SPE process, and that the stress in Si/gamma-Al2O3/Si thin film is much smaller than that of as-grown SOS and SPE upgraded SOS films. The stress decrease for double heteroepitaxial film Si/gamma-Al2O3/Si mainly arises from the smaller lattice mismatching of 2.4% between silicon top layer and the gamma-Al2O3/Si epitaxiial composite substrate, comparing with the large lattice mismatch of 13% for SOS films. It indicated that gamma-Al2O3/Si as a silicon-based epitaxial substrate benefits for reducing the residual stress for further growth of silicon layer, compared with on bulk sapphire substrate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of rapid thermal annealing on the optical and structural properties of self-assembled InAs/GaAs quantum dots capped by the InAlAs/InGaAs combination layers are studied by photoluminescence and transmission electron microscopy. The photoluminescence measurement shows that the photoluminescence peak of the sample after 850 degrees C rapid thermal annealing is blue shifted with 370meV and the excitation peak intensity increases by a factor of about 2.7 after the rapid thermal annealing, which indicates that the InAs quantum dots have experienced an abnormal transformation during the annealing. The transmission electron microscopy shows that the quantum dots disappear and a new InAlGaAs single quantum well structure forms after the rapid thermal annealing treatment. The transformation mechanism is discussed. These abnormal optical properties are attributed to the structural transformation of these quantum dots into a single quantum well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of metal alloy and monoelemental nanoclusters in silica by Ag, Cu ion sequential implantation and annealing in selected oxidizing or reducing atmosphere is studied. The formation of metastable Ag-Cu alloy is verified in the as-implanted samples by optical absorption spectra, selected area electron diffraction and energy dispersive spectrometer spectrum. The alloy is discomposed at elevated annealing temperature in both oxidizing and reducing atmospheres. The different effects of annealing behaviors on the Ag Cu alloy nanoclusters are investigated. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO thin films were grown by metal-organic chemical vapour deposition using methanol as oxidant. Rapid thermal annealing (RTA) was performed in an ambient of one atmosphere oxygen at 900 degrees C for 60 s. The RTA properties of the films have been characterized using scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, photoluminescence spectra and Hall measurement. The grains of the film were well coalesced and the surface became denser after RTA. The full-width at half maximum of rocking curves was only 496 arcsec. The ZnO films were also proved to have good optical quality. The Hall mobility increased to 43.2 cm(2) V-1 s(-1) while the electron concentration decreased to 6.6 x 10(16) cm(-3). It is found that methanol is a potential oxidant for ZnO growth and the quality of ZnO film can be improved substantially through RTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid thermal annealing (RTA) has been demonstrated as an effective way to improve the crystal quality of GaInNAs(Sb) quantum wells (QWs). However, few investigations have been made into its application in laser growth and fabrication. We have fabricated 1.3 mu m GaInNAs lasers, both as -grown and with post-growth RTA. Enhanced photoluminescence (PL) intensity and decreased threshold current are obtained with RTA, but the characteristic temperature T-o and slope efficiency deteriorate. Furthermore, T-o has an abnormal dependence on the cavity length. We attribute these problems to the deterioration of the wafer's surface. RTA with deposition Of SiO2 was performed to avoid this deterioration, T-o was improved over the samples that underwent RTA without SiO2. Post-growth and in situ annealing were also investigated in a 1.55 mu m GaInNAsSb system. Finally, continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength over 1.55 mu m was realized by introducing an in situ annealing process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report the effects of rapid thermal annealing (RTA) on the emission properties of highly uniform self-assembled InAs quantum dots (QDs) emitting at 1.3 mu m grown on GaAs substrate by metal organic chemical vapor deposition. Postgrowth RTA experiments were performed under N-2 flow at temperatures ranging from 600 to 900 degrees C for 30 s using GaAs proximity capping. Surprisingly, in spite of the capping, large blueshifts in the emission peak (up to about 380 meV at 850 degrees C) were observed (even at low annealing temperatures) along with enhanced integrated photoluminescence (PL) intensities. Moreover, pronounced peak broadenings occurred at low annealing temperatures (< 700 degrees C), indicating that RTA does not always cause peak narrowing, as is typically observed with traditional QDs with large inhomogeneous PL linewidths. The mechanism behind the large peak blueshift was studied and found to be attributed to the as-grown QDs with large size, which cause a larger dot-barrier interface and greater strain in and near the QD regions, thereby greatly promoting Ga-In intermixing across the interface during RTA. The results reported here demonstrate that it is possible to significantly shift the emission peak of the QDs by RTA without any additional procedures, even at lower annealing temperatures. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we use a pulsed rapid thermal processing (RTP) approach to create an emitter layer of hetero-junction solar cell. The process parameters and crystallization behaviour are studied. The structural, optical and electric properties of the crystallized films are also investigated. Both the depth of PN junction and the conductivity of the emitter layer increase with the number of RTP pulses increasing. Simulation results show that efficiencies of such solar cells can exceed 15% with a lower interface recombination rate, but the highest efficiency is 11.65% in our experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of rapid thermal annealing on InGaNAs/GaAs quantum wells. At optimized annealing temperatures and times, the greatest enhancement of the photoluminescence intensity is obtained by a special two-step annealing process. To identify the mechanism affecting the material quality during the rapid thermal annealing, differential temperature analysis is applied, and temperature- and power-dependent photoluminescence is carried out on the samples annealed under different conditions. Our experiment reveals that some composition redistribution or other related ordering process may occur in the quantum-well layer during annealing. Annealing at a lower temperature for a long time primarily can remove defects and dislocations while annealing at a higher temperature for a short time primarily homogenizes the composition in the quantum wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report a simple but effective way to improve the surface morphology of stacked 1.3 mu m InAs/GaAs quantum dot (QD) active regions grown by metal-organic chemical vapor deposition (MOCVD), in which GaAs middle spacer and top separate confining heterostructure (SCH) layers are deposited at a low temperature of 560 degrees C to suppress postgrowth annealing effect that can blueshift emission wavelength of QDs. By introducing annealing processes just after depositing the GaAs spacer layers, the authors demonstrate that the surface morphology of the top GaAs SCH layer can be dramatically improved. For a model structure of five-layer QDs, the surface roughness with the introduced annealing processes (IAPs) is reduced to about 1.3 nm (5x5 mu m(2) area), much less than 4.2 nm without the IAPs. Furthermore, photoluminescence measurements show that inserting the annealing steps does not induce any changes in emission wavelength. This dramatic improvement in surface morphology results from the improved GaAs spacer surfaces due to the IAPs. The technique reported here has important implications for realizing stacked 1.3 mu m InAs/GaAs QD lasers based on MOCVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cr3+-doped NH4Al(OH)(2)CO3 nanotubes, templated by surfactant assemblies, were successfully synthesized via the homogenization precipitation method, and various crystallographic phase Al2O3:Cr3+ nanotubes were also obtained by postannealing at different temperatures. The characteristic R-1, R-2 doublet line transitions of ruby can be observed in the high crystalline alpha-Al2O3 nanotubes calcined at temperatures higher than 1200 degrees C. The results also indicate that the formation mechanism of the tubular nanostructures should result from the self-rolling action of layered compound NH4Al(OH)(2)CO3 under the assistance of the surfactant soft-template. The convenient synthetic procedure, excellent reproducibility, clean reactions, high yield, and fine quality of products in this work make the present route attractive and significant. Aluminum oxide nanotubes with high specific surface area could be used as fabricating nanosized optical devices doped with different elements and stable catalyst supports of metal clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-doped AlGaN and GaN/AlGaN superlattice are grown by metalorganic chemical vapour deposition (MOCVD). Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4 x 10(3) Omega cm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7 x 10(17) cm(-3) and of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of amorphous silicon carbide films were prepared by plasma enhanced chemical vapor deposition technique on (100) silicon wafers by using methane, silane, and hydrogen as reactive resources. A very thin (around 15 A) gold film was evaporated on the half area of the aSiC:H films to investigate the metal induced crystallization effect. Then the a-SiC:H films were annealed at 1100 degrees C for 1 hour in the nitrogen atmosphere. Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to analyze the microstructure, composition and surface morphology of the films. The influences of the high temperature annealing on the microstructure of a-SiC:H film and the metal induced metallization were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rutherford backscattering/channeling (RBS/C) and X-ray diffraction (XRD) are used to comprehensively characterize a heterostructure of AlInGaN/GaN/Al2O3(0001). The AlInGaN quaternary layer was revealed to process a high crystalline quality with a minimum yield of 1.4% from RBS/C measurements. The channeling spectrum of (1 (2) under bar 13) exhibits higher dechanneling than that of (0001) at the interface of AlInGaN/GaN. XRD measurements prove a coherent growth of AlInGaN on the GaN template layer. Combining RBS/C and XRD measurements, we found that the interface of GaN/Al2O3 is a nucleation layer, composed of a large amount of disorders and cubic GaN slabs, while the interface of AlInGaN/GaN is free of extra disordering (i.e. compare with the GaN layer). The conclusion is further evidenced by transmission electron microscopy (TEM). (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid thermal annealing (RTA) has been demonstrated as an important way to improve the crystal quality of GaInNAs(Sb)/GaAs quantum wells. However little investigation has been made into their application in laser growth, especially at a wavelength of 1.55 mu m. When a GaAs-based laser is grown, AlGaAs is usually used for cladding layers. The growth of the p-cladding layer usually takes 30-45 min at a growth temperature higher than that of the GaInNAs(Sb) active region, which affects the material quality. To investigate this effect, various post-growth annealing processes were performed to simulate this process. Great enhancement of the PL intensity was obtained by a two-step process which consisted of annealing first at 700 degrees C for 60 s and then at 600 degrees C for 45 min. We transferred this post-growth annealing to in situ annealing. Finally, a GaInNAsSb laser was grown with a 700 degrees C in situ annealing process. Continuous operation at room temperature of a GaAs-based dilute nitride laser with a wavelength beyond 1.55 mu m was realized for the first time.