189 resultados para Vertical Component
Resumo:
The scattering of linear water waves by an infinitely long rectangular structure parallel to a vertical wall in oblique seas is investigated. Analytical expressions for the diffracted potentials are derived using the method of separation of variables. The unknown coefficients in the expressions are determined through the application of the eigenfunction expansion matching method. The expressions for wave forces on the structure are given. The calculated results are compared with those obtained by the boundary element method. In addition, the influences of the wall, the angle of wave incidence, the width of the structure, and the distance between the structure and the wall on wave forces are discussed. The method presented here can be easily extended to the study of the diffraction of obliquely incident waves by multiple rectangular structures.
Resumo:
EPSRC, the European Community IST FP6 Integrated, etc
Resumo:
This paper discusses a rigorous treatment of the refractive scintillation of pulsar PSR B0833-45 caused by a two-component interstellar scattering medium. It is assumed that the interstellar scattering medium is composed of a thin screen ISM and an extended interstellar medium. We consider that the scattering of the thin screen concentrates in a thin layer presented by a delta function distribution and that the scattering density of the extended irregular medium satisfies the Gaussian distribution. We investigate and develop equations for the flux density structure function corresponding to this two-component ISM geometry in the scattering density distribution and compare our result with that of the Vela pulsar observations. We conclude that the refractive scintillation caused by this two-component ISM scattering gives a more satisfactory explanation for the observed flux density variation of the Vela pulsar than does the single extended medium model. The level of refractive scintillation is strongly sensitive to the distribution of scattering material along the line of sight. The logarithmic slope of the structure function is sensitive to thin screen location and is relatively insensitive to the scattering strength of the thin screen medium. Therefore, the proposed model can be applied to interpret the structure function of flux density observed in pulsar PSR B0833-45. The result suggests that the medium consists of a discontinuous distribution of plasma turbulence embedded in the Vela supernova remnant. Thus our work provides some insight into the distribution of the scattering along the line of sight to the Vela pulsar.
Resumo:
Based on the n(x, lambda), the calculation of the reflection spectrum for vertical cavity surface emitting lasers shows that the deviation of the central wavelength caused by the change of layer thickness is much more than that caused by the change of AlAs mole fractions. Therefore the control of the MBE growth rate is very important.
Resumo:
The EER spectra of a single quantum well GaAs\AlxGa1-xAs electrode were studied as a function of applied reverse bias in ferrocene, p-methyl nitrobenzene and hydroquinone+benzoquinone non-aqueous solutions. EER spectra were compared for different redox species and showed that a pronounced quantum-confined Stark effect and a Franz-Keldysh oscillation for a single quantum well electrode were obtained in the p-methyl-nitrobenzene- and hydroquinone+benzoquinone-containing solutions. A surface interaction of the single quantum well electrode with ferrocene led to fewer changes in the electric field of the space charge layer for reverse bias; this was suggested to explain the weak quantum-confined Stark effect and Franz-Keldysh oscillation effect observed for the single quantum well electrode in the ferrocene-containing solution. (C) 1997 Elsevier Science S.A.
Resumo:
We have determined the far-field patterns and beam parameters of vertical-cavity surface-emitting lasers (VCSELs) with different structures. The results show that the window diameter and the active-layer aperture of VCSELs strongly influence laser far-field distributions and beam characteristics; for VCSELs with small window omega=5 mu m, only one dominant lobe has been observed in the far-field profiles, even though injected current was increased up to 2 Ith; and the smaller the ratio of the window diameter to the active-layer aperture, the larger is the far-field divergence. The laser structure dependence of the K factor has also been studied. (C) 1996 American Institute of Physics.
Resumo:
Effective cavity length method is introduced to vertical cavity surface emitting laser for characterizing some properties, including reflectivity FWHM, mode wavelength and threshold gain. Some experiment results are demonstrated, showing the agreement of theoretical analysis with experiment.
Resumo:
Vertical cavity surface emitting lasers operating in the 1.3- and 1.5-mu m wavelength ranges are highly attractive for telecommunications applications. However, they are far less well-developed than devices operating at shorter wavelengths. Pulsed electrically-injected lasing at 1.5 mu m, at temperatures up to 240 K, is demonstrated in a vertical-cavity surface-emitting laser with one epitaxial and one dielectric reflector. This is an encouraging result in the development of practical sources for optical fiber communications systems.
Resumo:
The effect of mesa size on the thermal characteristics of etched mesa vertical-cavity surfaceemitting lasers(VCSELs) is studied. The numerical results show that the mesa size of the top mirror strongly influences the temperature distribution inside the etched mesa VCSEL. Under a certain driving voltage, with decreasing mesa size, the location of the maximal temperature moves towards the p-contact metal, the temperature in the core region of the active layer rises greatly, and the thermal characteristics of the etched mesa VCSELs will deteriorate.