120 resultados para Upper Lakes Shipping, Ltd.
Resumo:
We investigate the influence of low-frequency Rossby waves on the thermal structure of the upper southwestern tropical Indian Ocean (SWTIO) using Argo profiles, satellite altimetric data, sea surface temperature, wind field data and the theory of linear vertical normal mode decomposition. Our results show that the SWTIO is generally dominated by the first baroclinic mode motion. As strong downwelling Rossby waves reach the SWTIO, the contribution of the second baroclinic mode motion in this region can be increased mainly because of the reduction in the vertical stratification of the upper layer above thermocline, and the enhancement in the vertical stratification of the lower layer under thermocline also contributes to it. The vertical displacement of each isothermal is enlarged and the thermal structure of the upper level is modulated, which is indicative of strong vertical mixing. However, the cold Rossby waves increase the vertical stratification of the upper level, restricting the variability related to the second baroclinic mode. On the other hand, during decaying phase of warm Rossby waves, Ekman upwelling and advection processes associated with the surface cyclonic wind circulation can restrain the downwelling processes, carrying the relatively colder water to the near-surface, which results in an out-of-phase phenomenon between sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) in the SWTIO.
Resumo:
A hydrographic section in the region east of Luzon was repeated 14 times during the period from 1986 to 1991. The data revealed the existence of a subsurface countercurrent located on the shoreward side of the Kuroshio with its upper boundary at about 500 m. The countercurrent, which should be called the Luzon Undercurrent (LUG), was only about 50 km wide, which is comparable to the baroclinic radius of deformation. Despite considerable variabilities both in velocity profile and intensity, the LUC appears to be a permanent feature. Over the period of observations, the maximum speed in the LUC calculated from the mean temperature and salinity by assuming geostrophy (relative to 2500 db) was 7 cm s(-1) at about 700 m and its mean geostrophic volume transport was 3.6 Sv (1 Sv = 10(6) m(3) s(-1)). About 28% of this transport was composed of the low-salinity North Pacific Intermediate Water (NPIW) advected to the south along the coast of Luzon. (C) 1997 Elsevier Science Ltd.
Resumo:
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2.5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, influence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.
Resumo:
For some species, hereditary factors have great effects on their population evolution, which can be described by the well-known Volterra model. A model developed is investigated in this article, considering the seasonal variation of the environment, where the diffusive effect of the population is also considered. The main approaches employed here are the upper-lower solution method and the monotone iteration technique. The results show that whether the species dies out or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the hereditary effects. The evolution of the population may show asymptotic periodicity, provided a certain condition is satisfied for the above factors. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The nitrogen isotopic composition of dissolved nitrate (delta N-15-NO3-) in surface water of the Yangtze River estuary was determined in four seasons of 2006. delta N-15-NO3- ranged from 0.4 parts per thousand to 6.5 parts per thousand and varied with seasons and geographic regions, reflecting the dynamics of nitrogen cycling in the estuarine ecosystem. delta N-15-NO3- was markedly lower in February than in other seasons and exhibited conservative mixing, which was probably attributed to the NO3- being sourced from the atmospheric deposition and agricultural fertilizer. In the upper estuary, the influence of riverine inputs was important during all surveys. in the turbidity maximum zone, nitrification was found with nitrate depleted in N-15 in May, whereas denitrification resulting in heavy delta N-15-NO3- played an important role in August. More enriched delta N-15-NO3- values coinciding with losses of nitrate concentrations based on the conservative mixing model were found in the adjacent marine area in May, and may reflect obvious phytoplankton assimilation of dissolved nitrate. In this manner, delta N-15-NO3- may be a sensitive indicator of nitrogen sources and biogeochemical processing existing in this estuary in conjunction with the variations of dissolved nitrate and other environmental factors. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
N, P and SiO3-Si in the Changjiang mainstream and its major tributaries and lakes were investigated in the dry season from November to December, 1997, and in the flood season in August and October, 1998. An even distribution of SiO3-Si was found along the Changjiang River. However, the concentrations of total nitrogen, total dissolved nitrogen, dissolved inorganic nitrogen, nitrate and total phosphorus, total particulate phosphorus increased notably in the upper reaches, which reflected an increasing impact from human activities. Those concentrations in the middle and lower reaches of the Changjiang River were relatively constant. Dissolved N was the major form of N and the particulate P was the major form of P in the Changjiang River. The molar ratio of dissolved N to dissolved P was extremely high (192.5-317.5), while that of the particulate form was low (5.6-37.7). High N/P ratio reflected a significant input of anthropogenic N such as N from precipitation and N lost from water and soil etc. Dissolved N and P was in a quasi-equilibrium state in the process from precipitate to the river. In the turbid river water, light limitation, rather than P limitation, seemed more likely to be a controlling factor for the growth of phytoplankton. A positive linear correlationship between the concentration of dissolved N and the river's runoff was found, mainly in the upper reaches, which was related to the non-point sources of N. Over the past decades, N concentration has greatly increased, but the change of P concentration was not as significant as N. The nutrient fluxes of the Changjiang mainstream and tributaries were estimated, and the result showed that the nutrient fluxes were mainly controlled by the runoff, of which more than a half came from the tributaries. These investigations carried out before water storage of the Three Gorges Dam will supply a scientific base for studying the influences of the Three Gorges Dam on the ecology and environment of the Changjiang River and its estuary.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Geo-ecological transect studies in the pastures of the upper catchment of the HuangHe (99 degrees 30'-100 degrees 00'E/35 degrees 30'-35 degrees 40'N'; 3,000-4,000 in a.s.l., Qinghai province, China) revealed evidence that pastures replace forests. Plot-based vegetation records and fenced grazing exclosure experiments enabled the identification of grazing indicator plants for the first time. The mapping of vegetation patterns of pastures with isolated juniper and Spruce forests raise questions as to the origin of the grasslands, which arc widely classified as "natural" at present. Soil investigations and charcoal fragments of Juniperus (8,153 +/- 63 uncal BP) and Picea (6,665 +/- 59 uncal BP) provide evidence of the wider presence of forests. As temperatures and rainfall records undoubtedly represent a forest climate, it is assumed that the present pastures have replaced forests. Circumstantial evidence arising from investigations into the environmental history of the Holocene effectively substantiates this theory.