163 resultados para Ultraviolet degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

对15株白腐真菌进行了以玉米秸秆为基质的初步筛选,从中获得一株选择性系数较高的菌株Y10,并对其降解玉米秸秆的情况进行了研究。结果表明,在30天的培养过程中菌株Y10对玉米秸秆降解的选择性系数都大于1,第15天选择性系数最高为3.88。对未经降解和降解过的玉米秸秆分别作了紫外光谱和红外光谱分析,结果表明,经该菌降解后玉米秸秆的化学成分发生了很大变化,且木质素的降解程度要大于纤维素的降解程度。对菌株Y10进行了ITS-5.8S rDNA序列鉴定,初步判定其为Cerrena sp.。 为了考查不同的外源添加物对菌株Y10降解玉米秸秆的影响,在以玉米秸秆为基质的固态发酵培养基中分别添加了7种金属离子、8种碳源、6种氮源。结果显示,这7种金属离子均能促进木质素的降解,并且一定浓度的某些离子明显抑制纤维素的降解;其中添加0.036%的MnSO4·H2O和0.36%的MgSO4·7H2O对纤维素降解的抑制作用比较强,降解率分别为0.96%和1.31%,木质素的选择性系数分别达到了34.40和20.17。8种碳源中除麦芽糖外都能促进木质素的降解,除微晶纤维素外都明显促进纤维素的降解。6种氮源中酒石酸铵、硫酸铵、草酸铵和氯化铵的添加都会使该菌生长变慢,而且氮源浓度越高菌丝生长越慢。外加碳源和金属离子对半纤维素降解和选择性系数的影响不大。 同时对菌株Y10在液态培养下产木质素降解酶的条件和培养基做了优化。结果表明,在初始产酶培养基中,菌株Y10的漆酶酶活在第10d达到最高,锰过氧化物酶酶活在第11d达到最高,基本上检测不到木质素过氧化物酶。菌株Y10产漆酶的最适温度为32℃,最适PH为6.0;产锰过氧化物酶的最适温度为32℃,最适PH为6.5。菌株Y10产漆酶的最佳碳源为甘露糖,最佳氮源为酒石酸铵,最适诱导剂VA浓度为3 mmol/L,最适表面活性剂TW-80浓度为1%。 利用响应面法对其产漆酶的培养基进行优化,优化后的培养基配方为葡萄糖10.00 g/L,酒石酸铵0.50 g/L,大量元素296.50 ml/L,微量元素100.00 ml/L,NTA 1.40 g/L,VA 5.00 mmol/L,吐温-80加入量为0.10%。进行了菌株Y10产漆酶的验证实验,实测酶活为5282.56 U/L,与预测酶活5162.73 U/L接近。在优化后培养基中,菌株Y10在第14 d达到生长的最高峰,第20 d时,漆酶酶活最高,为11325.00 U/L;第16 d时,锰过氧化物酶酶活最高,为30.77 U/L。 对菌株Y10的漆酶酶学性质做了初步的研究,结果显示,酶反应的最适温度为40℃-65℃,最适PH为3.0。在40℃,PH=3.0时,漆酶催化ABTS反应的米氏方程为 。 Fifteen white-rot fungi based on corn stalk were screened. One white-rot fungus Y10 with high selectivity value was obtained. The degradation of corn stalk was initially studied. The results indicated that the selectivity value was above 1 during the 30 day-cultivation and the highest was 3.88 after 15 days. The composition of untreated and treated stalk was analyzed through ultraviolet spectroscopy and infrared spectroscopy. It was found that the composition of treated stalk was greatly altered and the degree of the degradation of lignin is greater than the cellulose. Y10 was identified as Cerrena sp. by ITS -5.8S rDNA sequence analysis. The influence of metal ions, carbon sources and nitrogen sources on corn stalk degradation by white-rot fungus was studied. While all seven metal ions could promote lignin degradation, the cellulose degradation was best inhibited at certain ion concentrations. Notably, when 0.036% MnSO4·H2O and 0.36% MgSO4·7H2O were added into the medium, the cellulose degradation was restrained to the extents that the coefficients of lignin selectivity rose to 34.40 and 20.17 respectively. It was also found that all carbon sources except maltose can promote lignin degradation. The addition of carbon sources other than microcrystalline cellulose significantly promoted cellulose degradation. The addition of the nitrogen sources, ammonium tartrate, ammonium sulfate, oxalate, ammonium chloride, resulted in remarkable inhibition to mycelium growth; the larger the concentrations of nitrogen sources are, the slower the mycelium grew. The addition of carbon sources and metal ions had less impact on the degradation of hemicellulose and selectivity value. Meanwhile, we optimized the conditions and culture medium of the lignin-degrading enzyme production of strain Y10. The results showed that in the initial culture medium, the Lac activity was highest at the 10th day, the MnP activity was highest at the 11th day and the LiP could not be detected. The optimum condition of Lac was at temperature 32 and PH =6.0 and the optimum condition of MnP was at temperature 32 and PH =6.5. The optimum carbon source for Lac was seminose, the optimum nitrogen source was ammonium tartrate, the optimum content of VA was 3 mmol/L, the optimum content of TW-80 was 1%. PB and RSM were used to optimize the culture medium of laccase by white-rot fungus Y10. The optimum culture medium was consist of glucose 10.00 g/L, ammonium tartrate 0.50 g/L, macro elements 296.50 ml/L, trace elements 100.00 ml/L, NTA 1.40 g/L, VA 5.00 mmol/L, TW-80 0.10%. Under the optimal conditions, the activity of laccase was 5282.56 U/L and the experimental value agreed with the predicted value 5162.73 U/L. The biomass was highest at the 14th day, the Lac activity was highest at the 20th day, the MnP activity was highest at the 16th day. The results of the studies on the characteristics of Lac showed that the optimum temperature for Lac activity is 40℃-65℃ ; the optimum PH for Lac activity is 3.0 and under 40℃,PH=3.0, the Michaelis-menten equation of Lac catalized ABTS oxidation was .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

组特殊自养氨氧化混合种群,表现:无机环境种群生长迅速、生物量高;在一个完全无机的自养生长环境中,不仅保持高氨氧化速率,并出现丰富的异养微生物种群;该种群置于异养、厌氧环境中,迅速表现出产氢特征。对于这样一个特殊的生态体系,研究其共生机理,以及联接这些种群之间的碳源和能源问题,将具有非常重要意义。我们拟从种群特征、细胞表面分泌产物、游离体系产物多糖、蛋白和脂肪酸方面开展研究。 第一部分,自养氨氧化混合种群的基本特征。采用氨氧化培养基,进行种群氨氧化特征研究;采用扫描电镜观察自养混合种群的微观特征;沉降、离心去除微生物种群,分析水相中的总有机碳、糖类等物质;利用LB培养基进行种群的分离、纯化,并采用DGGE手段对微生物种群结构进行分析。结果表明,接入菌种后(2/5000(V/V)),培养液中氨(200mg/L)在3-5天内快速降解;亚硝酸盐与氨氮变化呈负相关趋势,仅有少量硝酸盐含量(< 30mg/L)。氨氧化种群的生物量增长与氨氧化趋势一致,初始生物量7.75 mg/L(蛋白含量),3-5天后生物量快速增长,并达到最高63.06 mg/L(蛋白含量)。电镜图片显示,种群外包裹一层粘液。离心除去菌体后,检测培养液总有机碳和糖的含量,同样表现出与生物量增长相似的特征,分别由初始的3.73、2.35 mg/L,3-5内天迅速增加,并分别达到最大值35.19、27.45 mg/L。经初步分离、纯化并对纯化菌株进行测序,获得了10株异养微生物分别为布鲁氏菌科苍白杆菌属、纤维单孢菌、类芽孢菌属、黄杆菌属、无色杆菌、鞘脂单胞菌、嗜麦芽寡养单胞菌、噬氢菌属、硫红球菌、假单胞菌;DGGE显示,约有20分条离带,我们对其中的两条优势条带进行切割回收测序,鉴定为欧洲亚硝化单胞菌(Nitrosomonas eur)。 第二部分:混合种群自养-异养菌共生的可能机制。在对微生物种群特征初步分析基础上,针对胞外糖类组分可能被微生物代谢分解,我们重点对微生物细胞蛋白质与糖类进行分析。采用超声结合RIPA裂解液裂解,SDS-PAGE电泳分析混合种群总蛋白种类,并通过氨基酸分析仪及红外光谱法分析氨基酸组成及蛋白红外特征。采用超声破碎结合反复冻融对细胞样品进行处理,提取液采用醇沉、Sevage脱氮白,凝胶过滤方法脱盐和分级分离。对提取物的糖分析包括:紫外扫描,红外光谱,核磁共振,单糖组成分析;扫描电镜观察菌群破裂现象。SDS-PAGE分析结果表明:氨氧化种群不同生长阶段都显示出42kD蛋白表达量很高,d4时42kD蛋白表达已经很强,4-7d内一直持续这种过量表达,直到d8后表达开始减弱。说明42kD蛋白可能与氨氧化密切相关。红外光谱分析显示:细胞提取物的特征峰分布在3427.42cm-1、1718.18 cm-1和1681.72 cm-1、1160.07和1086.74 cm-1,分别对应为OH、 C=O、C-O-C基团,表明具有蛋白的典型特征;氨基酸分析显示蛋白中的Gly,Asp,Ala,Glu含量相对较高。 提取物中胞外多糖分离谱图得到不均一组分,共得到6个收集峰;紫外扫描在201-213 nm处有多糖吸收峰,同样表明多糖成分不均一性;多糖红外光谱特征峰主要分别在3400.49 cm-1、2920.28 cm-1、1154.54和1087.52 cm-1,对应OH、-CH2- or CH 、C-O-H or C-O-C等多糖特征基团;多糖提取物核磁共振1H d4.3~5.9之间出现强吸收峰,这是1H中,多糖存在的明显证据,1H NMR中,其中O-乙酰基的甲基上的氢信号为d1.1~1.3之间。糖肟全苯甲酸酯衍生物的HPLC测定中,得到单一的单糖峰,由于时间问题,还未进行更深入的试验;电镜图片显示,种群中的细胞有大量的破裂现象。 实验表明,自养氨氧化混合种群显示出快速的氨氧化速率,氨氧化过程生物量和有机质的增加明显。微生物种群包裹粘液层,并分离纯化出大量的异养菌;去除菌体后的游离培养液中存在有机质(包括多糖)说明无机自养生长体系中存在异养菌生长、繁殖的二次碳源;细胞提取物中蛋白条带数目多、种类丰富;细胞多糖提取物具有明显的多糖特征,以及单糖的存在。结合种群的显微特征和游离体系中的有机质的检测结果,我们认为,无机自养生长体系中,种群细胞生长过程中发生的破裂现象可能是导致大量的蛋白、多糖释放到游离胞外,并成为其他异养菌生长的碳源和氮源。这可能是自养体系中,大量异养菌共生的可能机制,至于是什么原因引起种群生长过程中产生的破裂现象,还有待下一步深入研究。 A group of mixed autotrophic ammonia oxidizing populations, having much biological characteristic tested by concerned personnel for pilot test: Performed rapid population growth and obtained high biomass in inorganic environment; Not only maintained a high rate of ammoxidation, promoted a wealth of heterotrophic microbial populations growth in a totally inorganic and autotrophic growth environment; Placed in heterotrophic and anaerobic environment,had the performance characteristics that could rapidly produce hydrogen.For such a special ecological system, Study its symbiotic mechanism and the connection between these populations of carbon and energy issues, will have a very important significance. We intended from the characteristics of the population, the secretion product of cell surface, free substance in the liquid medium like polysaccharide, protein and fatty acids carrying out research. Part I: The basic features of mixed autotrophic ammonia oxidizing populations . Use inorganic liquid medium, processed study for ammonia oxidation characteristics of the population; we used scanning electron microscopy to get micro-features of autotrophic ammonia oxidizing populations .The medium was carried out settlement and centrifugal then removed the microbial populations, after all of that we analysis the water phase for total organic carbon(TOC), carbohydrate and other substances; Solid ammonia oxidizing medium was adopted to separation and purification of population, DGGE means was for structure analysis of microbial population. The results showed that after the inoculum of bacteria (2 / 5000 (V / V)), ammonia in the culture medium (200 mg / L) was rapid degradation in 3-5 days; ammonia and nitrite have the negative correlation between changes in the trend, then only a small amount of nitrate content (<30mg / L). The biomass growth of ammoxidation population in line with the trend of ammonia oxidation, the initial volume of it was 7.75 mg / L (protein content), in 3-5 days upto 63.06 mg / L (protein content). Electron microscope image showed, the populations were wrapped in a layer of mucus, including the a large number ruptted micorbe , Centrifuge to remove bacteria, then detected the medium for total organic carbon and sugar content, result took on the same characteristics with biomass growth, that were from the initial 3.73、2.35 mg / L respectively, in 3-6 days achieved rapid increase in the maximum to 35.19、27.45 mg / L respectively. After initial separation、 purification ,then processed sequencing to strains purified and got the result that there were 10 heterotrophic microorganisms : Brucella Branch pale bacillus, Cellu lomonas, Bacillus species category, a Flavobacterium, colorless Bacteria, Aeromonas sheath fat, little support maltophilia Aeromonas, macrophages species hydrogen, sulphur-MI, Pseudomonas bacteria spores; DGGE display, there were 20 separation bands approximately. Part II: Mixed populations that autotrophic - heterotrophic bacteria symbiotic mechanism. On the basis of preliminary analysis of microbial population characteristics, aiming at extracellular carbohydrate components might be decomposition by microbial, we focused on microbial cell protein and carbohydrate analysis. Using ultrasound combined with RIPA lysis cracking the cells, SDS-PAGE electrophoresis analysis the total protein species of the population, and through the amino acid analyzer studied the compositions of amino acid and infrared spectroscopy analysis of a protein infrared characteristics. Using ultrasound combined with repeatedly freezing and thawing to treated the cell sample, then took the means that alcohol precipitation, deproteinization by Sevage, gel filtration aimed at desalination and grade separation to deal with the lysates . The extraction of sugar analysis included: UV scanning, IR, NMR, single-sugar composition analysis. SDS-PAGE analysis showed that: 42 kD protein expression was very high at different growth stages of mixed autotrophic ammonia oxidizing populations , on the fourth day, 42 kD protein expression had been very strong, 4-7d, it had continued this excessive expression, then started to weaken after 7 days. 42 kD protein that might be closely associated with ammonia oxidation. Infrared spectral analysis showed that: cell extracts with the characteristic that the peak distribution in 3427.42 cm-1、1718.18 cm-1 and 1681.72 cm-1、1160.07 cm-1 and 1086.74 cm-1 corresponding to OH、C = O、C-O-C Groups which had the typical characteristics of protein; and analysis showed that amino acids including Gly, Asp, Ala, Glu ,the content in the protein is relatively high. Exopolysaccharide in the extracts had the separation map that it was uneven, received a total of six collection peaks by the detection mode of phenol-sulphruic acid method ; ultraviolet scan in the 201-213 nm department had polysaccharide absorbing peak, the same ingredients that polysaccharide heterogeneity; infrared polysaccharide spectral characteristics of the main peak at 3400.49 cm-1, 2920.28 cm-1, 1154.54 and 1087.52 cm-1, corresponding OH,-CH2-or CH, C-O-H or C-O-C;and other characteristics of polysaccharide group; 1H NMR of polysaccharide extract appeared absorption peak between d4.3 ~5.9, which is the apparent evidence of polysaccharide, In 1H NMR, the hydrogen signal of one of O-acetyl was between 1.1 to 1.3. The determination of Sugar oxime whole benzoate derivatives by HPLC, there was a single-sugar peak, as a matter of time, yet more in-depth test. Summary: Mixed autotrophic ammonia oxidizing populations show us that it had the ability in ammonia oxidizing and it was great, organic matter and biomass increased significantly in the process of ammonia oxidation. Microbial populations was wrapped up slime layer, the phenomenon of cell breakdown obviously, and there were a lot of separation and purification of the heterotrophic bacteria; a lot of organic matter (including polysaccharides)remined in the medium that removal of cell indicated the inorganic system existed secondary carbon sources that could be used by the heterotrophic bacteria ; there were a large number proteins bands of cell extract, rich variety; cell extracts of polysaccharide had obvious characteristics of polysaccharide, and the existence evidence of single-sugar. Combined population of microscopic characteristics and free of organic matter in the test results, we believe that the health of inorganic system, population growth occurred in the course of the breakdown of the phenomenon is likely to lead to a lot of protein and polysaccharide released into the extracellular free, And other heterotrophic bacteria use them to the growth as carbon and nitrogen. This may be autotrophic system, the large number of heterotrophic bacteria symbiotic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

随着化工行业的发展,大量有毒有害难降解有机物随工业废水的排放进入环境,这些物质能够在环境中长期存在、积累和扩散,通过食物链对动植物的生存及人类的健康造成不良影响。本文以苯酚、对氯硝基苯、氯苯和十六烷为模拟污染物,以前期研制的功能菌剂为对象,经过紫外线线诱变筛选出优于出发菌株的功能菌,对诱变后功能菌的理化性能进行了研究,对菌种进行了鉴定,在此基础上,就其相互之间的微生态关系进行研究,为混合发酵提供理论基础,并就其最佳发酵条件及发酵参数进行了研究,最后对发酵产品的性能进行了检测。目前,国内外有关功能菌剂的研究还存在多方面的不足,主要包括:①由于多菌种混合发酵过程较为复杂,各菌之间存在复杂的相互作用,影响因素较多,关于菌种之间的相互关系研究得很少,环境功能菌剂的发酵方法大多采用单独发酵后混合的方式。单独发酵对原材料、设备和能源的利用率较低,对于多菌种制剂发酵,在设备、能源和原材料的方面造成的浪费更大,将会大幅增加菌剂的生产成本,影响多菌种功能菌剂的发展;②功能菌剂生产过程的质量控制方面研究得较少;③功能菌剂产品的稳定性、抗冲击性能研究得较少,对环境微生物制剂的研究主要集中在菌种选育和培养条件优化方面。 通过本论文研究,得到以下主要结论。 (1)在紫外线诱变处理中,用紫外线对发生一定程度退化的出发菌株进行诱变处理后,六株具有高效降解性能的菌株被筛选出来,诱变筛选出的菌株形态和ERIC-PCR指纹图谱与出发菌株相比发生了明显改变;而且诱变后的菌株对目标难降解底物的降解能力均得到改善,其中,FPN、FCB、F14、FEm对目标底物的降解率提高了20%以上;诱变后菌株经过7次连续传代接种后,对目标难降解底物的降解率无显著变化,具有一定的遗传稳定性。并对诱变后的功能菌进行了初步的鉴定,这6株菌都分别是芽孢杆菌。 (2)对诱变后的功能菌相互之间的微生态关系进行了研究,通过抑菌实验、生长量以及基质消耗量的比较,确定它们之间的生长关系是无害共栖关系,可以进行混合发酵。 (3)对该功能菌剂进行发酵培养条件研究,结果表明发酵培养基的最佳成分(g/L):葡萄糖 31.0g/L、玉米粉10.0g/L、磷酸氢二钾1.0g/L、硫酸铵1.1g/L、硫酸镁0.55g/L。通过研究不同的培养条件对菌体生长和降解性能的影响,确定了最佳培养条件:培养基初始pH7.5;最适温度32℃;培养基装液量125mL(250 mL三角瓶),以及培养时间对降解性能的影响,培养20 h的产物对降解最为有利。通过研究添加不同目标污染物对菌体生长和降解性能的影响,确定了添加目标污染物的最佳量以及最佳时间:苯酚投加量:1.125 g/L,对氯硝基苯投加量:0.1 g/L;最佳投加时间为发酵培养开始后4 h。 (4)以摇瓶分批发酵最优条件为基础,对FPN、F10、FCB、FNa、F14 和 FEm进行了摇瓶分批发酵试验。以摇瓶分批发酵试验数据为依据,对功能菌剂分批发酵动力学进行了研究,建立了菌体生长和基质消耗的动力学模型,拟合模型能较好的反映功能菌剂分批发酵过程。 (5)功能菌剂和活性污泥协同作用,可以提高系统的生物降解能力,功能菌剂投加量为2%,新鲜活性污泥3500 mg/L,降解24 h条件下,功能菌剂和活性污泥的协同作用对COD的去除率和对照组相比,最多的提高了36.8%。功能菌剂和活性污泥协同作用以及活性污泥的单独作用,其生物降解过程均符合一级反应动力学过程,功能菌剂和活性污泥协同作用的生物降解动力学方程为:,相关系数97%。采用SBR运行方式,引入功能菌剂的SBR系统明显能够改善和提高生物降解的效率。与仅有活性污泥的系统相比,系统对COD的平均去除率可以提高27.1%,同时,系统的耐负荷冲击以及耐毒害冲击的性能比仅有活性污泥的SBR系统强,特别是负荷冲击对引入功能菌剂的SBR系统影响很小。仅有活性污泥的SBR系统经过负荷冲击和毒害冲击之后,不能恢复到冲击之前的水平,而且系统有效作用时间的周期比引入功能菌剂的SBR系统相比大大缩短,而引入功能菌剂的SBR系统处理效果较为稳定,恢复能力很强。 Along with the development of industries, many recalcitrant organic chemicals have been discharged into natural environments together with wastewaters and can exist in waters, soil and sediments for a long time without degradation. These haz-ardous substances, their byporducts and metabolizabilities can be highly toxic, mu-tagenic and carcinogenic, thereby threatening animals, plants and human health through food chain. Consequently the removal of these compounds is of significant interest in the area of wastewater treatment. In this dissertation, the phenol, hydro-quinone, chlorobenzene and hexadecane treated as the model pollutants, the func-tional microorganism agent was used as the starting strains, they treated with ultra-violet light, and then the mutant strains with high degradation ability were screened out and identified primarily, the relationship between these stains were studied, the medium composition and fermentation conditions were optimized, the degradation ability of the fermented production was tested. The literature survey indicates that the study of the microorganism agent is far from complete and more information is re-quired on following problems. 1, Because of the complexity of relationship in mixed fermentation and the complicated factors, the study is hardly to process.2, There is a lack of information on the quality control of the producing process .3, And there is a lack of information on the stability about the microorganism agent. In this dissertation, the main results of the present study could be summarized as follows: (1)The degenerate starting strains were treated with the ultraviolet light, and six mutant strains with high biodegradation ability were screened out by using the me-dium with selective pressure of model pollutants. The mutant strains had great changes in colonialmorphology and ERIC-PCR fingerprinting. And the mutant strains got obvious advantages over the starting strains in degradation ability and over 20% improvement of removal rates was achieved for FPN、FCB、F14 and FEm. The de-gradation ability of the mutant strains was stable after seven generations. After that, the mutant strains were primarily identified as bacillus respectively. (2) The relationship between these mutant strains was studied. By the compari-son of antibiosis effect, biomass and consumption of substrate, the relationships were neutralism and they could be mixed fermented. (3) The optimized cultivation conditions were as follows: glucose 31.0 g/L, corn power 10 g/L, K2HPO4 1.0 g/L, (NH4)2SO4 1.1 g/L, MgSO4 0.55 g/L, initial pH7.5, temperature 32℃, working volume 125 mL/250 mL, and cultivation time 20h (con-sidering the time effect on degradation ability), adding pollutants phenol (1.125 g/L) and hydroquinone (0.1 g/L) into the broth at 4 h after cultivation. (4) Based on the above optimum condition, the batch fermentation was per-formed with strains FPN, F10, FCB, FNa, F14 and FEm in shake flask. The batch fermentation kinetics was studied based on the experimental data. Two kinetic models were constructed which could reflect the regularity of growth and substrate consump-tion in the process of batch fermentation. (5) The co-operation of functional microorganism agent and activated sludge could raise biodegradation of system by adding some microorganism agent and 3500 mg/L fresh activated sludge. Bioaugumentation by the addition of high effective deg-radation culture enhanced the treatment effect of SBR system and the COD removal rate was increased by 20%-36.8%. Its biodegradation matched first-order dynamical reaction equation, and the reaction equation was ln0.2327.391ct=−+. The micro-organism agent had the effect of optimization to activated sludge micro-ecosystem. The SBR system adding 2% microorganism agent, the average COD removal rate of that was increased by 27.1% and stronger anti-shock ability to load and toxicant were achieved (compared with SBR system just adding activated sludge). Especially the load-shock has barely effect to the SBR system adding microorganism agent. After the load and toxicant shock, the SBR system just adding activated sludge couldn’t come back to original level and the activated sludge micro-ecosystem was frustrated. The applying of microorganism agent increased biological activity and system’s re-sistance ability to load shock and toxicant shock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been generally agreed that pyridine can be effectively mineralized in aerated TiO2 slurries using near-UV irradiation. The knowledge on the kinetics of the system possesses both practical and theoretical values. The present study, on the base of Langmuir-Hinshewood mechanism, illustrates a pseudo first-order kinetic model of the degradation with the limiting rate constant of 3.004 mg l(-1) min(-1) and equilibrium adsorption constant 2.763 x 10(-2) l mg(-1), respectively. The degradation efficiency in alkali is a little higher than that in acid with a minimum at about pH = 5, which is explained by the formation of acid-pyridine in acidic surrounding together with the amphoteric nature of the TiO2 surface. The promotion of H2O2 on the photo-degradation ties in its supplying proper amount of (OH)-O-. radicals for the inducement stage before surface redox reactions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lifetime behavior of a H-2/O-2 proton exchange membrane (PEM) fuel cell with polystyrene sulfonic acid (PSSA) membrane have been investigated in order to give an insight into the degradation mechanism of the PSSA membrane. The distribution of sulfur concentration in the cross section of the PSSA membrane was measured by energy dispersive analysis of X-ray, and the chemical composition of the PSSA membrane was characterized by infrared spectroscopy before and after the lifetime experiment. The degradation mechanism of the PSSA membrane is postulated as: the oxygen reduction at the cathode proceeds through some peroxide intermediates during the fuel cell operation, and these intermediates have strong oxidative ability and may chemically attack the tertiary hydrogen at the a carbon of the PSSA; the degradation of the PSSA membrane mainly takes place at the cathode side of the cell, and the loss of the aromatic rings and the SO3- groups simultaneously occurs from the PSSA membrane. A new kind of the PSSA-Nafion composite membrane, where the Nafion membrane is bonded with the PSSA membrane and located at the cathode of the cell, was designed to prevent oxidation degradation of the PSSA membrane in fuel cells. The performances of fuel cells with PSSA-Nafion101 and PSSA-recast Nafion composite membranes are demonstrated to be stable after 835 h and 240 h, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV F response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported by MSS images in the mid and late 1970s, TM images in the early 1990s and TM/ETM images in 2004, grassland degradation in the "Three-River Headwaters" region (TRH region) was interpreted through analysis on IRS images in two time series, then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s. The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale, and rapidly strengthen phenomenon did not exist in the 1990s as a whole. Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s. Since the 1970s, this degradation process has taken place continuously, obviously characterizing different rules in different regions. In humid and semi-humid meadow region, grassland firstly fragmentized, then vegetation coverage decreased continuously, and finally "black-soil-patch" degraded grassland was formed. But in semi-arid and and steppe region, the vegetation coverage decreased continuously, and finally desertification was formed. Because grassland degradation had obviously regional differences in the TRH region, it could be regionalized into 7 zones, and each zone had different characteristics in type, grade, scale and time process of grassland degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation and its temperature dependence of poly(methyl methacrylate) (PMMA) in the blend film of PMMA/SAN were investigated via ire-situ X-ray photoelectron spectroscopy(XPS). The results show that thermal degradation of PMMA takes place at 185, 130, 80 degrees C and even room temperature due to the existence of monochromatic X-ray. Furthermore, the degradation rate depends crucially on the experiment temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow deoxyribonucleic acid (DNA)/poly-L-lysine (PLL) capsules were successfully fabricated through a layer-by-layer (LbL) self-assembly of DNA and PLL on porous CaCO3 microparticles, followed by removal of templates with ethylenediamine tetraacetic acid disodium salt (EDTA). The enzymatic degradation of the capsules in the presence of alpha-chymotrypsin was explored. The higher the enzyme concentration, the higher is the degradation rate of hollow capsules. in addition, glutaric dialdehyde (GA) cross-linking was found to be another way to manipulate degradation rate of hollow capsules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic degradation of organic dye molecules has attracted extensive attention due to their high toxicity to water resources. In this paper, we propose a novel method for the fabrication of uniform silver-coated ZnO nanowire arrays. The degradation of typical dye molecule rhodamine 6G (R6G), as an example, is investigated in the presence of the as-prepared silver-coated ZnO nanowire arrays. The experimental results show that such composite nanostructures exhibit high catalytic activity, and the reaction follows pseudo-first-order kinetics. Furthermore, these nanowire arrays are desirable SERS substrates for monitoring the catalytic degradation of dye molecules. Compared with traditional UV-visible spectroscopy, SERS technology can reflect more truly the catalytic degradation process occurring on the surface of the catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Sr3Al2O5Cl2:Ce3+,Eu2+ phosphors were prepared by solid state reaction. The obtained phosphors exhibit a strong absorption in the UV-visible region and have two intense emission bands at 444 and 609 nm. The energy transfer from the Ce3+ to Eu2+ ions was observed, and the critical distance has been estimated to be about 24.5 A by spectral overlap method. Furthermore, the developed phosphors can generate lights from yellow-to-white region under the excitation of UV radiation by appropriately tuning the activator content, indicating that they have potential applications as an UV-convertible phosphor for white light emitting diodes.