141 resultados para Thermal pollution of rivers, lakes, etc
Resumo:
A novel AB-monomer, 3-maleimidostilbene (ST-MAI), was synthesized. DSC investigation indicated that the ST-MAI monomer melted at 127 degrees C and thermally polymerized in the temperature range of 180 similar to 300 degrees C. LR investigation on the thermal polymerization processes proved that the thermal polymerization included not only copolymerizaiton between stilbene and maleimide, but also homopolymerization of maleimide. The largest reaction conversion of maleimide and stilbene unit in a ST-MAI monomer was about 82% and 50% respectively. The glass transition temperature of cured ST-MAI resin was 234 degrees C, determined by DSC. The decomposition temperatures for 10% weight loss was above 430 degrees C in both air and nitrogen atmospheres.
Resumo:
The thermal properties of ethylene propylene copolymer-grafted-acrylic acid (EP-g-AA) were investigated by using differential scanning calorimetry (DSC). Compared with the ethylene propylene copolymer (EP), the peak values of the melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, the crystallization temperature (T-c) increased about 8-12 degrees C, and the melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of the ungrafted sample was 1.6-1.8, and that of grafted samples were all above 2, which indicated that the grafted monomer could become the crystal nuclei for the crystallization of propylene sequence. With increasing grafted monomer content, the crystallization rate of propylene sequence in grafted EP increased; it might be the result of rapid nucleation rate and crystal growth rate.
Resumo:
The thermal properties of ethylene-propylene copolymer grafted with glycidyl methacrylate (EP-g-GMA) were investigated by using differential scanning calorimetry (DSC). Compared to the plain ethylene-propylene copolymer (EP), peak values of melting temperature (T-m) of the propylene sequences in the grafted EP changed a little, crystallization temperature (T-c) increased about 8-12 degrees C, and melting enthalpy (Delta H-m) increased about 4-6 J/g. The isothermal and nonisothermal crystallization kinetics of grafted and ungrafted samples was carried out by DSC. Within the scope of the researched crystallization temperature, the Avrami exponent (n) of ungrafted sample is 1.6-1.8, and those of grafted samples are all above 2. The crystallization rates of propylene sequence in EP-g-GMA were faster than that in the plain EP and increased with increasing of grafted monomer content. It might be attributed to the results of rapid nucleation rate. (C) 1996 John Wiley & Sons, Inc.
Resumo:
A series of vinylidene chloride (VDC) copolymers with methyl acrylate (MA) or butyl acrylate (BA) as comonomer (not more than 10%) was prepared by free-radical suspension copolymerization. The effects of comonomer structure, copolymer composition, and reaction condition (such as polymerization temperature on crystallinity) and thermal properties (such as melting temperature and decomposition temperature) were investigated. All VDC/acrylics copolymers studied here are semicrystalline and have more than one crystalline structure. The melting temperature of MA/VDC copolymers is decreased progressively with increase in MA content. The decomposition temperature of MA/VDC copolymers is slight increased gradually with increase in MA content. MA/VDC copolymers have lower melting temperature compared with BA/VDC copolymers with same VDC composition. The melting temperature of VDC copolymers increases with increase in polymerization temperature and decomposition temperature of those is almost independent of polymerization temperature. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Thermal properties of polyaniline (PAn), polytoluidine(POT) and polyanisidine(PAs) were examined by TG and DSC techniques. The weight-uptake of POT at 200-300 degrees C was observed and carefully discussed.
Resumo:
Thermal behavior of polyaniline(PAn) doped with kinds of inorganic or organic acids under desired atmosphere were studied by TG,DSC and in-situ electrical conductivity measurements. The reason for the thermal stability of electrical conductivity of doped PAn was discussed.
Resumo:
TG and DTA analysis of Y1-xCaxBa2Cu3O7-y suggests that the stability of the 123 phase increases with increasing Ca contents. The O(1) in the Cu(1)-O chain is unstable but O(2) and O(3) in Cu(2)-O planes are very stable. There are hardly any oxygen vacanci
Resumo:
The melt flow behaviour of LDPE/HDPE blends with various compositions have been determined by melt flow index (MFI) measurement. The effects of stabilizers, photo-sensitizers, multiple extrusions and short-term photooxidation have been studied. The results show that there is no marked thermal stability difference between homopolymers and blends without multiple extrusions, no matter whether stabilizers or photo-sensitizers are added. Multiple extrusions or photo-sensitizers reduce their thermal stability, shown by the decrease in MFI. The decrease in MFI of photooxidized samples does not imply serious structural change and shows that the active species formed during photooxidation induce a crosslinking reaction in the melt indexer. Multiple extrusions increase the number of active species formed in LDPE or blends and lead to an obvious decrease in MFI. It is suggested that LDPE and LDPE-rich blends after short-term photooxidation can be characterized by MFI measurement. In contrast, HDPE cannot be characterized by this method due to its linear structure.
Resumo:
The thermal oxidation behaviour of polypropylene containing tetramethylpiperidine compounds and corresponding pentamethylpiperidine compounds are compared using air oven aging, oxygen uptake and thermogravimetry. Carbonyl formation, the induction period of oxygen absorption and weight loss have been selected to characterize the degree of oxidation. The results show that the stabilizing effectiveness of pentamethylpiperidines is always higher than that of tetramethyl types. Radical-trapping mechanisms cannot explain this, because large amounts of nitroxyl radicals are formed by the tetramethylpiperidine compounds. The quenching of singlet oxygen appears to be involved in thermal oxidation of polypropylene containing pentamethylpiperidine compounds. Specific hydrogen bonding between pentamethylpiperidines and hydroperoxide may account for their better thermal stabilizing action than tetramethylpiperidines.
Resumo:
Mossbauer spectroscopy has been used to investigate the thermal decomposition of the bioinorganic complex of europium and L-glutamine. The Mossbauer parameters can demonstrate that the water molecules in the complex and the chlorine anion in the hydrogen chloride molecule, dissociated from the complex below 200-degrees-C, are not linked directly to the europium atom. The thermal decomposition process of the complex is discussed and a possible coordination model for the europium L-glutamine complex is also proposed on the basis of the thermogravimetric and derivative thermogravimetric curves, and from some evidence obtained from the Mossbauer effects of some decomposition products of the complex.
Resumo:
Thermogravimetric and derivative thermogravimetric investigations for three kinds of bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine and DL-alanyl-DL-alanine have been performed. It was found that the water molecules in these solid state complexes are not directly coordinated to the europium ion and that there may be three or four steps in the thermal decomposition process of these complexes after dehydration. The possible thermal decomposition reactions of these bioinorganic complexes have been suggested and discussed.
Resumo:
The crystal structure of erbium (III) complex of benzene acetic acid is reported. The complex crystallizes in the monoclinic space group P2(1)/a with a = 0,9008(3)nm, b=1.4242(5) nm, c=1.8437(7) nm, beta=98.80(3)degrees, V = 2.337(1) nm(3), Z = 4. The mechanism of thermal decomposition of complex has been studied by TG-DTG-DTA. The activation energy for dehydration reaction has been calculated by Freeman Carroll method. The enthalpy change for dehydration and phase change process has been determined.
Resumo:
Some results on the thermal analysis of polyimides and polyaryl ether sulfones, some reactions and the purity determination of the monomers, and the thermal stability and kinetic analysis of the thermo-oxidative degradation of these polymers are described.