190 resultados para Targeting Sequence
Resumo:
Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the a-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.
MitoTool: A web server for the analysis and retrieval of human mitochondrial DNA sequence variations
Resumo:
In this study, the energy for the ground state of helium and a few helium-like ions (Z=1-6) is computed variationally by using a Hylleraas-like wavefunction. A four-parameters wavefunction, satisfying boundary conditions for coalescence points, is combined with a Hylleraas-like basis set which explicitly incorporates r12 interelectronic distance. The main contribution of this work is the introduction of modified correlation terms leading to the definition of integral transforms which provide the calculation of expectation value of energy to be done analytically over single-particle coordinates instead of Hylleraas coordinates.
Resumo:
Global transposable characteristics in the complete DNA sequence of the Saccharomyces cevevisiae yeast is determined by using the metric representation and recurrence plot methods. On the basis of the correlation distance of nucleotide strings, 16 chromosome sequences of the yeast, which are divided into 5 groups, display 4 kinds of the fundamental transposable characteristics: a short increasing period, a long increasing quasi-period, a long major value and hardly relevant.