113 resultados para Surface preparation.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An in-situ modified sol-gel method for the preparation of a Ni-based monolith-supported catalyst is reported. With the presence of a proper amount of plasticizer and binder, and at an optimized pH value, the stable boehmite sol was modified with metal ions (Ni, Li, La) successfully without distinct growth of the particle size. Monolith-supported Ni-based/gamma-Al2O3 catalysts were obtained using the modified sol as the coating medium with several cycles of dip-coating and calcination. Combined BET, SEM-EDS, XRD and H-2-TPR investigations demonstrated that the derived monolith catalysts had a high specific surface area, a relatively homogeneous surface composition, and a high extent of interaction between the active component and the support. These catalysts showed relatively stable catalytic activities for partial oxidation of methane (POM) to syngas under atmospheric pressure. The monolith catalysts prepared by this sol-gel method also demonstrated an improved resistance to sintering and loss of the active component during the reaction process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A NaA zeolite membrane was synthesized on the surface of the stainless steel stab. The membrane was characterized by XRD and SEM. The membrane was continuous and highly intergrown. The size of NaA zeolite crystals was about 5 similar to 6 mum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titania sols were prepared by acid hydrolysis of a TiCl4 precursor instead of titanium alkoxides. The effect of acid concentration on the particle size and stability of sol was investigated. Stable titania sols with mean particle size of 14 nm could be obtained when the H+/Ti molar ratio was 0.5. The titania sols were modified with Pt, SiO2, ZrO2, WO3 and MoO3 to prepare a series of modified catalysts, which were used for the photocatalytic oxidation of formaldehyde at 37 degreesC. They showed different photocatalytic activities due to the influence of the additives. Comparing with pure TiO2, the addition of silica or zirconia increased the photocatalytic activity, while the addition of Pt and MoO3 decreased the activity, and the addition Of WO3 had little effect on the activity. It is of great significance that the conversion of formaldehyde was increased up to 94% over the SiO2-TiO2 catalyst. The increased activity was partly due to higher surface area and porosity or smaller crystallite size. A comparison of our catalyst compositions with the literature in this field suggested that the difference in activity due to the addition of a second metal oxide maybe caused by the surface chemistry of the catalysts, particularly the acidity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New silica-based europium fluorescent nanoparticles having surface amino groups were prepared by a covalent binding-copolymerization technique. In the nanoparticles, the fluorescent Eu3+ chelate molecules were covalently bound to silicon atoms to protect the nanoparticles from dye leaking in bio-applications. The amino groups on the surface of nanoparticles made the surface modification and bioconjugation of nanoparticles easier. The nanoparticles were characterized and developed as a new type of fluorescence probe for a highly sensitive time-resolved fluoroimmunoassay (TR-FIA) of human hepatitis B surface antigen (HBsAg).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of PtRu nanocomposites supported on H2O2-oxidized multi-walled carbon nanotubes (MWCNTs) were synthesized via two chemical reduction methods - one used aqueous formaldehyde (HCHO method) and the other used ethylene glycol (EG method) as the reducing agents. The effects of the solvents (water and ethylene glycol) and the surface composition of the MWCNTs on the deposition and the dispersion of the metal particles were investigated using N-2 adsorption. TEM. ICP-AES. FTIR and TPD. The wetting heats of the MWCNTs in corresponding solvents were also measured. The characterizations suggest that combination of the surface chemistry of the MWCNTs with the solvents decides the deposition and the dispersion of the metal nanoparticles. These nanocomposites were evaluated as proton exchange membrane fuel cell anode catalyts for oxidation of 50 ppm CO contaminated hydrogen and compared with a commercial PtRu/C catalyst. The data reveal superior performances for the nanocomposites prepared by the EG method to those by the HCHO method and even to that for tile Commercial analogue. Structure performance relationship of the nanocomposites was also studied. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO3)(3) and [Pt(H2NCH2CH2NH2)(2)]Cl-2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (220) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new post-grafting process, consisting of two steps of substrate preparation and sol - gel post-grafting, has been developed to prepare titanium-doped mesoporous SBA-15 material with a double-layered structure and locally concentrated titanium content at the inner pore surface. With this novel technique, the single phased and originally ordered mesostructures can be well conserved; in the conventional direct synthesis they can be partially damaged when the frameworks are doped with high content heteroatoms. Titanium species exist in an isolated, tetrahedral structure and are localized at the pore surface; this is beneficial to both reactant access and product release. Characterization with XRD, N-2 adsorption/desorption isotherms, HREM/ EDS, ICP, UV - Vis, and the newly developed UV - Raman spectroscopy confirm these results. Preliminary catalytic tests with the selective epoxidation of cyclohexene show good catalytic activity. Among them, sample TiSBA-15-10 with a Si : Ti molar ratio of 10 shows a TON value of 75 and a highest product ( epoxide) yield of 55%.