117 resultados para Simulation Monte-Carlo
Resumo:
本论文中采用IP方法模拟硬盘读写头的气膜润滑问题,并选择耗时但精准的DSMC方法作为该问题中IP方法的检验标准,IP方法计算得到的读写头表面压力分布及读写头所受净升力为读写头的设计提供可靠的参考数据。 首先,将读写头复杂表面简化为平面并假定尺寸为微米(远小于真实的毫米),微米尺寸时可以得到DSMC的模拟结果用于比较。IP法对该问题的模拟结果与DSMC的模拟结果完全吻合。 其次,选定一个真实的读写头表面几何,但仍然假定尺寸为微米。IP法在该问题的应用过程中遇到四点困难,我们提出或采取了相应的解决办法。在复杂表面几何的读写头气膜润滑问题中,IP法的模拟结果与DSMC的模拟结果也相符一致。 最后完成真实几何、真实尺寸(毫米)的读写头气膜润滑问题的模拟,这也是本论文的最终研究目标。IP法模拟该问题时需要采用大网格,为此我们构造二维检验模型验证了大网格的合理性。 真实几何读写头气膜润滑问题的模拟结果表明,在流场的局部区域压力沿着高度方向变化显著,这意味着读写头问题的传统计算方法(即概括性雷诺方程)在该局部区域不成立,故用它计算得到的结果值得认真检验,但文献中尚未给出过这类检验。这正是该论文的研究背景和采用新方法(IP方法)的原因。 本论文研究的问题属于过渡领域、低速流动问题,故本论文还介绍了该领域另外一种粒子模拟方法(LVDSMC方法)以及我们对该方法提出的一些改进。 关键词:硬盘读写头,气膜润滑,概括性雷诺方程,IP方法,DSMC方法,过渡领域,LVDSMC方法
Resumo:
在中性原子的磁囚禁实验中,磁阱线圈的电流噪声会激发磁阱中的原子运动,势必对原子团的温度和寿命产生不可忽视的影响。对于非简谐阱,这种激发具有能量选择特性,它又取决于电流噪声的频谱分布。选择了实验中常用的四极阱为研究对象,用直接模拟蒙特卡罗方法来模拟四极阱中原子运动的参变激发现象,得到了原子温度与原子数损失随激发频率的变化关系,并进一步计算了两个共振峰处原子温度随调制时间和调制深度的变化曲线。此外,还研究了弹性碰撞速率对参变激发过程中原子温度上升的影响。这些结果对四极阱参变激发的实验有较好的参考价值。
Resumo:
The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310
Resumo:
最近,Homolle和Hadjiconstantinu提出了新的粒子模拟方法———LVDSMC方法[1],该方法采用了减少方差的思想从而提高了低速流动问题中的计算效率。本文针对LVDSMC方法提出两点改进:第一,除了方法中原来已采用的偏差粒子,在计算近自由分子流问题时建议额外地采用一些辅助粒子,从而可以约束计算过程中原始算法在生成偏差粒子时计算误差的累积效应;第二,提出一个可选的用于计算潜在Maxwell Boltzmann分布函数中的速度参数的增量,从而使得表面的应力及热流的计算变得简单。
Resumo:
Our recent studies on kinetic behaviors of gas flows are reviewed in this paper. These flows have a wide range of background, but share a common feature that the flow Knudsen number is larger than 0.01. Thus kinetic approaches such as the direct simulation Monte Carlo method are required for their description. In the past few years, we studied several micro/nano-scale flows by developing novel particle simulation approach, and investigated the flows in low-pressure chambers and at high altitude. In addition, the microscopic behaviors of a couple of classical flow problems were analyzed, which shows the potential for kinetic approaches to reveal the microscopic mechanism of gas flows.
Resumo:
A Monte Carlo simulation is performed to study the dependence of collision frequency on interparticle distance for a system composed of two hard-sphere particles. The simulation quantitatively shows that the collision frequency drops down sharply as the distance between two particles increases. This characteristic provides a useful evidence for the collision-reaction dynamics of aggregation process for the two-particle system described in the other reference.
Resumo:
A computer simulation was performed to explore the features and effects of sedimentation on rapid coagulation. To estimate the accumulated influence of gravity on coagulation for dispersions, a sedimentation influence ratio is defined. Some factors possibly related to the influence of sedimentation were considered in the simulation and analysed by comparing the size distribution of aggregates, the change in collision number, and coagulation rates at different gravity levels (0 g, 1 g and more with g being the gravitational constant).
Resumo:
InAs quantum dots (QDs) are grown on the cleaved edge of an InxGa1-xAs/GaAs supperlattice experimentally and a good linear alignment of these QDs on the surface of an InxGa1-xAs layer has been realized. The modulation effects of periodic strain on the substrate are investigated theoretically using a kinetic Monte Carlo method. Our results show that a good alignment of QDs can be achieved when the strain energy reaches 2% of the atomic binding energy. The simulation results are in excellent qualitative agreement with our experiments. (C) 2005 American Institute of Physics.
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.
Resumo:
To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.
Resumo:
The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.
Resumo:
Molecular dynamics is applied to the system of polystyrene-block-poly(methyl methacrylate). The simulation shows that for the block copolymer system, a layered structure, which reflects microphase separation, is obtained and this structure is stable. In order to elucidate that the formation of the layered structure is reasonable, some static properties such as the radial distribution function and the dipole moment are analyzed in some detail.