155 resultados para Silver gamer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method has been developed to assemble gold nanoparticles to generate 1D assemblies by the assistance of silver ions. The lengths of nanoparticle chains can be controlled by adjusting the content of silver ions in the system. The assembly procedure of gold nanoparticles chains requires no template. The gold nanoparticle chains were characterized using TEM and XPS techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the pH-induced assembly of 2-mercaptosuccinic acid-functionalized silver nanoparticles (MSA-Ag NPs) in the absence of hard or soft template. Two-dimensional (2D) and three-dimensional (3D) networks of silver NPs were achieved by tuning pH of the medium. The assembly process was monitored using atomic forces microscopy. The key factor affects the formation of network of silver NPs may be intermolecular hydrogen bonding between two carboxylic acid groups of MSA on two adjacent silver NPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stable silver nanoclusters with narrow size distribution have been prepared by heating a third-generation poly(propyleneimine) dendrimer/AgNO3 aqueous solution without the additional step of introducing other reducing agents and protect agents. UV-vis absorption, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), and X-ray diffraction (XRD) have been used to characterize the resulting products. The as-obtained sample was in coexistence of Ag and Ag2O. It also suggested that increasing temperature resulted in both the decrease in number of small particles and the increase in size of large particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles were synthesized by the use of a two-armed polymer with a crown ether core [poly(styrene)]-dibenzo-18-crown-6-[poly(styrene)] based on the flexibility of the polymer chains and the complex effect of crown ether with Ag+ and Ag. The size of silver nanoparticles could be tailored by controlling the initial concentrations of the polymer and Ag+, and the molecular weight of the polymer. The emission of silver nanoparticles was blue-shifted, and the intensity of the photoluminescence of silver nanoparticles stabilized by the polymer was significantly increased due to the complex effect between the crown ether embedded in the polymer and the silver nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, green method was developed for the synthesis of gold and silver nanoparticles by using polysaccharides as reducing/stabilizing agents. The obtained positively charged chitosan-stabilized gold nanoparticles and negatively charged heparin-stabilized silver nanoparticles were characterized with UV-vis spectroscopy and transmission electron microscopy. The results illustrated the formation of gold and silver nanoparticles inside the nanoscopic polysaccharide templates. Moreover, the morphology and size distribution of prepared gold and silver nanoparticles varied with the concentration of both the polysaccharides and the precursor metal salts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of room-temperature ionic liquids (RTILs) as media for electrochemical application is very attractive. In this work, the electrochemical deposition of silver was investigated at a glassy carbon electrode in hydrophobic 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and hydrophilic 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) RTILs and in KNO3 aqueous solution by cyclic voltammetric and potentiostatic transient techniques. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of silver from AgBF4 in both BMIMPF6 and BMIMBF4, resembling the redox behavior of AgNO3 in KNO3 aqueous solution. A crossover loop was observed in all the cyclic voltammograms of these electrochemical systems, indicating a nucleation process. From the analysis of the experimental current transients, it was shown that the electrochemical deposition process of silver in these media was characteristic of 3D nucleation with diffusion-controlled hemispherical growth, and the silver nucleation closely followed the response predicted for progressive nucleation in BMIMPF6 and instantaneous nucleation in KNO3 aqueous solution, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four different sizes of citrate-protected silver nanoplates with the corresponding in-plane dipole resonance band at 530, 619, 778, and 858 nm, respectively, are synthesized for surface-enhanced Raman scattering (SERS) study. Their aggregation behaviors are monitored by use of UV-vis spectroscopy. During the aggregation process, a marked red shift of the in-plane dipole resonance of silver nanoplates is observed, whereas other resonance modes of them only have small alterations in the site or intensity. Aggregated silver nanoplates can serve as active SERS substrates with an enhancement factor of about 4.5 x 10(5) using 2-aminothiophenol as a probing molecule. The SERS performance of silver nanoplates is even superior to the commonly used Lee-Meisel silver colloid, making them very attractive for SERS applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the small-biomolecule ( glycyl glycine)-directed synthesis of single-crystalline silver nanoplates, and different experimental conditions have been explored for a more thorough understanding of the growth mechanism. The yield of silver nanoplates relative to the total number of nanoparticles formed was as high as similar to 80%. It was found that the ratio of glycyl glycine to AgNO3 was the key to forming Ag nanoplates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, four novel silver(I) sulfonate coordination polymers containing neutral ligands, namely, [Ag(2)Ll (biim)(2)]center dot 2H(2)O (1). AgL2(biim) (2), [Ag(HL3)(Pic)(2)]center dot H2O (3), and [Ag-3(L3)(HL3)(4,4'-bipy)(3)(H2O)(2)]center dot 4H(2)O (4), have been synthesized [L1 = 3-carboxy-4-hydroxybenzenesulfonate, L2 = p-aminobenzenesulfonate, H(2)L3 = p-hydroxybenzenesulfonic acid, biim = 1,1'-(1.4-butanediyl)-bis(imidazole), Pic = beta-picoline, 4,4'-bipy = 4,4'-bipyridine]. For compounds 1 and 2, Ag(I) cations are bridged by biim ligands to form a one-dimensional (1D) "zigzag" chain, and L1 and L2 sulfonate ligands are not coordinated to the silver cation. Compound 3 has a dimeric structure in which two silver cations are bridged by two HL3 ligands. For compound 4, L3 ligand coordinates to a silver cation as a monodentate ligand, and Ag(l) cations are bridged by 4,4'-bipy ligands to form a ID chain. Compound 1 contains water dimers, while compound 4 contains water trimers. Compounds 1-3 display room-temperature photoluminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel "gold electrode-molecular wires-silver" junction was facilely fabricated for electrochemical study on the electron transportation through molecular wires. Rapid electron transportation through this sandwich-like structure was indeed observed by cyclic voltammograms and ac impedance measurements. Since rather reproducible and reliable results are easily available by electrochemical techniques, it would be an efficient and reliable test bed for electrochemical investigation of charge transportation through molecular wires in self-assembled monolayers on electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.