120 resultados para Scanning tunneling microscopy (STM)
Resumo:
The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.
Resumo:
Adsorption of a monolayer of didecanoyl-L-alpha-phosphatidylcholine (DDPC) from dispersions of small unilamellar vesicles onto hydrophobic surfaces was investigated by mean of cyclic voltammetry and impedance spectroscopy. The hydrophobic surfaces were self-assembled monolayers of 2-mereapto-3-n-octylthiophene (MOT) on gold. One characteristic of the MOT monolayer is its permeability to organic molecules in aqueous solution, thus providing a more energetically favorable hydrophobic surface for the addition of phospholipid vesicles. The kinetics of the lipid monolayer formation were followed by measuring the time-dependent interfacial capacitance. Unusual values of thickness and capacitance of the MOT/ DDPC bilayers were observed. An interdigitating conformation of the bilayer structure was proposed to interpret the experimental results, The horseradish peroxidase reconstituted into the bilayer demonstrated the expected protein activity, showing practical use in research and in biosensor application.
Resumo:
The preparation, structure, and electrochemical and electrocatalytical properties of a new polyoxometalate-based organic/inorganic film, composed of cetyl pyridinum 11-molybdovanadoarsenate (CPMVA) molecules, have been studied. Cyclic potential scanning in acetone solution led to a stable CPMVA film formed on a highly oriented pyrolytic graphite (HOPG) surface. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used for characterizing the structure and properties of the CPMVA film. These studies indicated that self-aggregated clusters were formed on a freshly cleaved HOPG surface, while a self-organized monolayer was formed on the precathodized HOPG electrode. The CPMVA film exhibited reversible redox kinetics both in acidic aqueous and in acetone solution, which showed that it could be used as a catalyst even in organic phase. The CPMVA film remained stable even at pH > 7.0, and the pH dependence of the film was much smaller than that of its inorganic film (H4AsMo11VO40) in aqueous solution. The CPMVA film showed strong electrocatalysis on the reduction of bromate, and the catalytic currents were proportional to the square of the concentration of bromate. The new kind of polyoxometalate with good stability may have extensive promise in catalysis.
Resumo:
Different sizes of Frechet-type dendrons with a thiol group at the focal point were synthesized, well characterized, and used as building blocks for the preparation of self-assembled monolayers (SAMs) on metal surfaces. From the studies of the kinetic process of dendron thiol self-assembling on gold, it is shown that the dendron thiol assembling proceeds with different adsorption rates depending on the assembly time. In contrast to normal alkanethiols forming highly molecular structures on metal surfaces, the SAMs of polyether dendron form patterned surfaces with nanometer-sized features and in long-range order. It is found that the patterned stripes are closely related to the size of the dendron, and the patterned stripes can be improved by thermal annealing.
Resumo:
This overview presents the recent progress in the area of endohedral metallofullerenes in the past several years. The important results have been summarized as follows: (1) Many metals including Group 3 metals, most of the lanthanide series elements, and Group 2 metals have been encapsulated into a fullerene cage to form mono-, di-, and trimetallofullerenes by using the arc-evaporation technique. (2) Some endohedral metallofullerenes such as Group 3 metals, most of the lanthanide series elements, Group 2 metals, and some of their isomers have been successfully isolated and purified by a two-step or several-step HPLC technique. By using high-temperature and high-pressure extraction with pyridine, Ln@C-80, Ln@C-82, and Ln2@C-80 for most rare-earth metals have been selectively extracted in high yield (about 1% of the saw soot) from fullerenes and other size metallofullerenes. (3) The endohedral nature of metallofullerenes such as Y@C-82, Sc2@C-84, and Sc@C-82 has been finally confirmed by synchrotron X-ray powder diffraction. The symmetries and the structures of metallofullerenes such as Ca@C-82(III), La-2@C-80(I-h), Sc-2@C-84(D-2d), and Sc-2@C-84(C-s) have been confirmed by NMR measurements. (Lb) The information on the electronic structures and properties of endohedral metallofullerenes has been obtained by various spectrometric means Such as EPR, W-vis-MR, XPS, CV. It is generally accepted that three-electron transfer is favorable when M = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu but Sc, Eu, Sm, Yb, Tm, Ca, Sr, Ba prefer to donate two electrons to the fullerene cages. (5) Several chemical reactions of endohedral metallofullerenes have been reported in which reagents are disilacyclopropane, digermacyclopropane, diphenyldiazomethane, and trifluoroacetic acid. (6) Mass spectrometry provided the crucial evidence that led to the discovery of metallofullerenes in 1985 and has always played a key role in their identification and characterization, Ion-mobility measurements of gas-phase ions have obtained the information of structures and the formation mechanism of endohedral metallofullerenes. till Theoretical calculations on the endohedral metallofullerenes have made an important contribution to the studies on the symmetry of the cage, the position of metal atom(s) inside the cage, the number of electronic transfer between metal atom(s) and fullerene cage, etc. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
In this paper, we present a new method of fabricating metal nanoparticles on carbon substrates through molecular design. Scanning tunneling microscopy measurements show that the electrochemically synthesized Ag nanoparticles are homogeneously dispersed on the modified highly oriented pyrolytic graphite (HOPG) surface with a narrow particle size distribution. Moreover, the size and number density of Ag nanoparticles on the grafted HOPG surface can be easily changed through control of the experimental conditions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A highly ordered single crystal carbon material, highly oriented pyrolytic graphite (HOPG) has been successfully employed as a working electrode in an electrochemical quartz crystal microbalance study. RTV silicone rubber is selected to adhere the HOPG film onto the quartz crystal surface. Such modified quartz crystal can oscillate with stable frequency. The electrode modified in this way has good electrochemical properties.
Resumo:
Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.
Resumo:
The glassy carbon electrode (gce) and highly oriented pyrolytic graphite (hopg) were electrochemically anodized at a potential of +2.0 V (vs. Ag/AgCl) to create active sites and to improve the adsorption of glucose oxidase (GOD) and flavin adenine dinucle
Resumo:
The phycobilisomes were isolated from blue-green alga Spirulina platensis, and could form monolayer film at air/water interface. The monolayer film of phycobilisomes was transferred to newly cleaved mica, and coated with gold. Scanning tunneling microscope was used to investigate the structure of the Langmuir-Blodgett film of phycobilisomes. It was shown that phycobilisomes in the monolayer arrayed in rows with core attaching on the substrate surface and rods radiating towards the air phase, this phenomenon was similar to the arrangement of phycobilisomes on cytoplasmic surface of thylakoid membrane in vivo. The possible applications of the Langmuir-Blodgett film of phycobilisomes were also discussed.
Resumo:
1.采用改进的蒸发液滴中流体毛细流动法,用于展开和固定适于AFM研究的大环状DNA。对长达148.9 kbp的人类基因组3号染色体上一个完整的酵母染色体DNA分子和pB孙22质粒DNA进行了展开固定研究,长度测定显示偏差小于3.5%,结果优于其它展开线性DNA的方法。对其相应的展开机理进行了初步探讨:利用AFM考察了不同长度的DNA分子在云母基底上的分子级分形图案。实验证明DNA分子级的分形图案与DNA的浓度、长度和其它辅助因素相关。我们认为DLA理论或许更适合描述DNA分子在云母基底上形成不同分形图案的体系。2.我们利用阳离子的桥合作用,将质粒DNA固定并展开在云母基底上制得了DNA网络结构。结合实验数据,对质粒DNA形成的机理和可控的参数:离子种类、离子浓度、网孔大小和网孔高度进行了讨论,提出了相应的模型进行解释。我们在半透明的云母基底以及玻璃和蓝宝石等透明基底上构建了不同结构的DNA网络。结合实验数据,讨论了在各种固体基底上形成DNA网络的影响因素,我们认为,固体基底表面的亲水性对于构建DNA网络起重要作用。我们通过控制乙醇的浓度与温度结合原子力显微镜样品定位技术发现,云母基底上形成DNA膜的DNA分子是否移动与处理DNA样品的乙醇浓度有直接关系。对于纯乙醇溶液无论是高温(6O℃)或常温,均未引起DNA分子的移动(无论是吸附在云母基底上的,还是吸附在DNA分子链上的);如果用混合有水的乙醇溶液(无论其中水的含量多少),不管是高温(60℃)或常温,都会引起DNA膜结构发生变化,即DNA分子发生了移动。热乙醇水溶液对DNA分子的作用比常温情况下更明显1可能是热力学上的因素导致的。3.通过控制银纳米微粒在云母基底上的聚集行为,而非直接通过化学合成的方法,构建了一种新的银结构一纳米银盘。详细阐述了如何得到这种结构的过程,通过原子力显微镜、紫外可见光光谱和X一射线电子能谱技术等工具对其性质也作了相应的表征。这种由纳米粒子组成的银盘与文献报道的单晶纳米银盘相比具有更大的比表面积,在纳米催化等方面有更广阔的应用前景。通过自聚集方式构建纳米银盘结构的方法,对于人们通常认为在溶液中合成的纳米结构与在各种固体基底上表征的纳米结构是一致的观点提出了新的理解。利用戊二醛试剂与发光的纳米微粒萘酰亚胺通过醛胺加成反应形成酰胺键,组装形成二维发光粒子网络。结合原子力显微镜高度形貌图和光谱数据,发现粒子间形成了两种典型的网络结构即,实心六方堆积和空心六方堆积结构。对此我们提出了相应的模型给予解释。4,利用展开的质粒DNA为模板诱导形成了环状的氯化镁纳米结构。原子力显微镜考察表明,这些纳米结构的高度是6.2±1.3-8.2±1.80nm,长度为1.35±0.18到2.93±0.25um。我们以CTAB包裹18nm纳米金和3.5nm纳米银使之形成带正电荷的外壳,利用。NA磷酸骨架带负电荷特性,通过静电自组装方式形成了金属化的纳米网络结构。通过AFM、UV-vis光谱和XPS谱的表征说明,带正电荷外壳的纳米金和纳米银被DNA模板高度地组装形成有序的二维网络结构。5.利用自制的样品定位系统,重复性地对整个基底范围内的样品实行定位,定位的精确度达400nm。这种方法对于样品旋转角度或取出后进行进一步处理都适用。该定位方法依赖于一台个人电脑,一个样品定位仪,一个CCD相机和一套可视光学系统,用于监测透明或半透明基底如,云母、玻璃、蓝宝石、石英和钦酸银等原子力显微镜广泛使用的基底表面或背面特征。作为对这种定位方法的应用,我们用不同的灯M操作模式,不同的针尖对单个的DNA分子、单个的DNA-蛋白质复合物和DNA网络在样品移动或拿出样品台后进行了定位实验。这种方法的精度和分辨率,对于一般的商用或自制SPM(AFM,STM,sNOM)系统都可以适用。
Resumo:
The reversible fabrication of positive and negative nanopatterns on 1-hexadecanethiol (HDT) self-assembled monolayers (SAMs) on Au(111) was realized by bias-assisted atomic force microscopy (AFM) nanolithography using an ethanol-ink tip. The formation of positive and negative nanopatterns via the bias-assisted nanolithography depends solely on the polarity of the applied bias, and their writing speeds can reach 800,um/s and go beyond 1000 mu m/s, respectively. The composition of the positive nanopatterns is gold oxide and the nanometer-scale gold oxide can be reduced by ethanol to gold, as proved by X-ray photoelectron spectroscopy (XPS) analysis, forming the negative nanopatterns which can be refilled with HDT to recover the SAMs.
Resumo:
A review is given on the recent development of scanning probe microscope (SPM) tip modification techniques for chemical force microscope, including the preparation and application of SPM tip modified by self-assembled monolayer, atomic force microscope (AFM) tip modified by biological molecule, scanning tunneling microscope tip modified by electrochemical method, AFM tip modified by carbon nanotube.
Resumo:
Phycobilisomes (PBS) were isolated from blue-green alga Spirulina platensis. Scanning tunneling microscope was used to investigate the three-dimensional structure of PBS deposited on freshly cleaved highly oriented pyrolytic graphite (HOPG) in ambient condition at room temperature. The results showed that the rods of PBS radiated from the core to different directions in the space other than arrayed in one plane, which was different from the typical hemi-discoidal model structure. The diameter of PBS was up to 70 nm, and the rod was approximately 50 nm in length. Similar results were observed in Langmuir-Blodgett (LB) film of PBS. The dissociated PBS could reaggregate into rod-like structures and easily form two-dimensional membrane while being absorbed on HOPG, however, no intact PBS was observed. The filling-space model structure of PBS in Spirulina platensis with STM from three-dimensional real space at nanometer scale was found, which showed that this new structural model of PBS surely exists in blue-green algae and red algae. The function of this structural model of PBS was also discussed.