123 resultados para Range Limits
Resumo:
An electrochemical pretreatment regime for a cylindrical carbon fibre microelectrode was optimized for the determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN) by capillary electrophoresis (CE)-electrochemical detection (ED). Under optimized conditions, a response of high sensitivity and stability was obtained for AM and AAN at a detection voltage as low as 0.9 V following CE-ED, by which AM and AAN were separated satisfactorily. The calibration graph was linear over three orders of magnitude and the limits of detection for AM and AAN were in the femtomole range.
Resumo:
A reversed-phase high-performance liquid chromatographic method with amperometric detection is described for the separation and quantification of uric acid, guanine, hypoxanthine and xanthine. The isocratic separation of a standard mixture of the compounds was achieved in 5 min on a Spherisorb 5 C-18 reversed-phase column, with a mobile phase of NaH2PO4 (300 mmol dm(-3) pH 3.0)-methanol-acetonitrile-tetrahydrofuran (97.8 + 0.5 + 1.5 + 0.2). Uric acid, guanine, hypoxanthine and xanthine were completely separated, with detection limits in the range 2-20 pmol per injection. The effect of pH and the composition of the mobile phase on the separation are described. The hydrodynamic voltammograms of these compounds were recorded at a glassy carbon electrode. The linear range of the calibration graph for each compound was: uric acid; 1-5000 mu mol dm(-3); guanine, 0.5-2000 mu mol dm(-3); hypoxanthine, 0.1-500 mu mol dm(-3) and xanthine, 0.5-5000 mu mol dm(-3). The within- and between-day precision was good. The uric acid and hypoxanthine content in human plasma was measured using the proposed method. Good recoveries of uric acid (97.9-103%), hypoxanthine (98.0-99.2%), guanine (96.0-98.3%) and xanthine (96.0-102%) were obtained from human plasma. The results of electrochemical detection were in good agreement with those of UV detection.
Resumo:
A vitamin B-12 chemically modified electrode (CME) was constructed by adsorption of vitamin B-12 onto a glassy carbon surface. The electrode catalyzes the electrooxidation of hydrazine compounds over a wide pH range. The electrocatalytic behavior of hydrazines is elucidated with respect to the CME preparation conditions, solution pH, operating potential, mobile phase flow rate, and other variables. When applied to liquid chromatographic detection of the analytes, the vitamin B-12 CME yielded a linear response range over 2 orders of magnitude, and detection limits at the picomole level. The vitamin B-12 CME offers acceptable catalytic stability in both batch and flow systems.
Resumo:
A copper-based chemically modified electrode (CME) has been constructed and characterized for flow-through amperometric detection of catechol, resorcinol, and hydroquinone. Novel potential dependence of the detector response was first obtained for these analytes at the Cu CME, where negative peaks together with positive ones were observed in one definite chromatogram using amperometric detection. Its advantages in chromatographic applications were demonstrated. From these observations it is proposed that the detector response was governed by formation of copper complexes with the solutes. A dynamic linear range over two orders of magnitude was obtained, when operating the detector at +0.10 V vs. SCE, from which ng detection limits were achieved.
Resumo:
An electrochemical detector based on a polyaniline conducting polymer chemically modified electrode (PAn CME) was developed for use in flow-injection analysis and ion chromatography. Iodide, bromide, thiocyanate and thiosulphate are detected by using ion chromatography with a PAn CME electrochemical detector. The detection limits are 1, 5, 10 and 10 mgl-1, respectively. The CME response for electroinactive anions varies selectively with the mobile phase composition in flow-injection analysis. By this approach, perchlorate, sulphate, nitrate, iodide, acetate and oxalate can be detected conveniently and reproducibly over a linear concentration range of at least 3 orders of magnitude. The electrode is stable for over 2 weeks with no evidence of chemical or mechanical deterioration.
Resumo:
Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.
Resumo:
An off-line chelation system combined with ICP-MS technique was developed for the quantitative determination of trace elements in seawater, namely V, Co, Ni, Cu, Zn, Mo, Cd, Pb, U and rare earth elements(REEs). The system was built based on an ion chromatography equipped with MetPac((R)) CC-I chelation columns which had a strong selective chelation to these target elements within a pH range 5.2-5.6. Acidified seawater samples and NH4Ac(2 mol/L) were blended to meet suitable pH before being injected into the chelation column, thus target elements were retained while alkali and alkaline metals were excluded. Then chelated elements were eluted by HNO3 (1 mol/L) and samples were collected for ICP-MS analysis. Varying the ratio of input( gen. 200 mL) to output( gen. 5 mL), the target elements which were concentrated as 40 times as their concentrations were far beyond instrumental quantification limits. At last, a certificated seawater CASS-4 was introduced and our detected values were in good agreement with those certified values.
Resumo:
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C-18 column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2 x 10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N = 3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
2-(2-Phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA) and 2-(9-acridone)-acetic acid (AAA), two novel precolumn fluorescent derivatization reagents, have been developed and compared for analysis of primary aromatic amines by high performance liquid chromatographic fluorescence detection coupled with online mass spectrometric identification. PPIA and AAA react rapidly and smoothly with the aromatic amines on the basis of a condensation reaction using 1-ethyl-3-(3dimethylaminopropyl)-carbodiimide (EDC) as dehydrating catalyst to form stable derivatives with emission wavelengths at 380 and 440 nm, respectively. Taking six primary aromatic amines (aniline, 2-methylaniline, 2-methoxyaniline, 4-methylaniline, 4-chloroaniline, and 4-bromoaniline) as testing compounds, derivatization conditions such as coupling reagent, basic catalyst, reaction temperature and time, reaction solvent, and fluorescent labeling reagent concentration have also been investigated. With the better PPIA method, chromatographic separation of derivatized aromatic amines exhibited a good baseline resolution on an RP column. At the same time, by online mass spectrometric identification with atmospheric pressure chemical ionization (APCI) source in positive ion mode, the PPIA-labeled derivatives were characterized by easy-to-interpret mass spectra due to the prominent protonated molecular ion m/z [M + H](+) and specific fragment ions (MS/MS) m/z 335 and 295. The linear range is 24.41 fmol-200.0 pmol with correlation coefficients in the range of 0.9996-0.9999, and detection limits of PPIA-labeled aromatic amines are 0.12-0.21 nmol/L (S/N = 3). Method repeatability, precision, and recovery were evaluated and the results were excellent for the efficient HPLC analysis. The most important argument, however, was the high sensitivity and ease-of-handling of the PPIA method. Preliminary experiments with wastewater samples collected from the waterspout of a paper mill and its nearby soil where pollution with aromatic amines may be expected show that the method is highly validated with little interference in the chromatogram.
Resumo:
A high performance capillary electrophoresis method with diode array detector detection for the determination of five bioactive ingredients in Tibetan medicine Elsholtzia, namely quercetin, rutin, saussurenoside, kaempferol, and oleanolic acid, has been developed. The effects of several factors, such as the acidity, concentration of running buffer, separation voltage, temperature, and SDS concentration were investigated. The optimal conditions were 44 mmol/L boric acid running buffer (pH 8.5), 45 mmol/L SDS, 16 KV voltage, 20 degrees C, and 10.0% (V/V) of acetonitrile. Under the optimum conditions, five components could be separated with a good baseline resolution within 17 min. The calibration curves showed good linear relationship over the concentration range of 5 x 10(-4)similar to 0.1 mg/mL for quercetin, rutin, saussurenoside, kaempferol, and 1 x 10(-3) similar to 0.1 mg/mL for oleanolic acid. The average recoveries of the method and RSD were ( 99.2%, 3.2%) for quercetin, (102.1%, 2.1%) for rutin, (99.4%, 1.5%) for saussurenoside, (98.9%, 1.8%) for kaempferol, and (99.0%, 2.9%) for oleanolic acid, respectively. The detection limits (S/N = 3) were 1.1 x 10(-4) mg/mL for quercetin, 2.6 x 10(-4) mg/mL for rutin, 1.8 x 10(-4) mg/mL for saussurenoside, 2.9 x 10(-4) mg/mL for kaempferol, and 6.3 x 10(-4) mg/mL for oleanolic acid, respectively. The method was simple, rapid, and reproducible and could be applied for the determination of quercetin, rutin, saussurenoside, kaempferol, and oleanolic acid in Tibetan medicine Elsholtzia, and the assay results were satisfactory.
Resumo:
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance, liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+ H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate, (FMOC-Cl) as labeling reagents. The ratios I-BCEC/I-BCEOC = 1.94-2.17 and I-BCEC/I-FMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C-8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were < 3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of > 0.9996. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Characterization of Platinum Group Elements (PGE) has been applied to earth, space and environmental sciences. However, all these applications are based on a basic prerequisite, i.e. their concentration or ratio in the research objects can be accurately and precisely determined. In fact, development in these related studies is a great challenge to the analytical chemistry of the PGE because their content in the geological sample (non-mineralized) is often extremely low, range from ppt (10~(-12)g/g) to ppt (10~(-9)g/g). Their distribution is highly heterogeneous, usually concentrating in single particle or phase. Therefore, the accurate determination of these elements remains a problem in analytical chemistry and it obstructs the research on geochemistry of PGE. A great effort has been made in scientific community to reliable determining of very low amounts of PGE, which has been focused on to reduce the level of background in used reagents and to solve probable heterogeneity of PGE in samples. Undoubtedly, the fire-assay method is one of the best ways for solving the heterogeneity, as a large amount of sample weight (10-50g) can be hold. This page is mainly aimed at development of the methodology on separation, concentration and determination of the ultra-trace PGE in the rock and peat samples, and then they are applied to study the trace of PGE in ophiolite suite, in Kudi, West Kunlun and Tunguska explosion in 1908. The achievements of the study are summarized as follows: 1. A PGE lab is established in the Laboratory of Lithosphere Tectonic Evolution, IGG, CAS. 2. A modified method of determination of PGE in geological samples using NiS Fire-Assay with inductively coupled plasma-mass spectrometry (ICP-MS) is set up. The technical improvements are made as following: (1) investigating the level of background in used reagents, and finding the contents of Au, Pt and Pd in carbonyl nickel powder are 30, 0.6 and 0.6ng/g, respectively and 0.35, 7.5 and 6.4ng, respectively in other flux, and the contents of Ru, Rh, Os in whole reagents used are very low (below or near the detection limits of ICP-MS); (2) measuring the recoveries of PGE using different collector (Ni+S) and finding 1.5g of carbonyl nickel is effective for recovering the PGE for 15g samples (recoveries are more than 90%), reducing the inherent blank value due to impurities reagents; (3) direct dissolving nickel button in Teflon bomb and using Te-precipitation, so reducing the loss of PGE during preconcentration process and improving the recoveries of PGE (above 60% for Os and 93.6-106.3% for other PGE, using 2g carbonyl nickel); (4) simplifying the procedure of analyzing Osmium; (5)method detection limits are 8.6, 4.8, 43, 2.4, 82pg/g for 15g sample size ofRu, Rh, Pd, Ir, Pt, respectively. 3. An analytical method is set up to determine the content of ultra-trace PGE in peat samples. The method detection limits are 0.06, 0.1, 0.001, 0.001 and 0.002ng/mL for Ru, Rh, Pd, Ir and Pt, respectively. 4. Distinct anomaly of Pd and Os are firstly found in the peat sampling near the Tunguska explosion site, using the analytical method. 5. Applying the method to the study on the origin of Tunguska explosion and making the following conclusions: (1) these excess elements were likely resulted from the Tunguska Cosmic Body (TCB) explosion of 1908. (2) The Tunguska explosive body was composed of materials (solid components) similar to C1 chondrite, and, most probably, a cometary object, which weighed more than 10~7 tons and had a radius of more than 126 m. 6. The analysis method about ultra-trace PGE in rock samples is successfully used in the study on the characteristic of PGE in Kudi ophiolite suite and the following conclusions are made: (1) The difference of the mantle normalization of PGE patterns between dunite, harzburgite and lherzolite in Kudi indicates that they are residual of multi-stage partial melt of the mantle. Their depletion of Ir at a similar degree probably indicates the existence of an upper mantle depleted Ir. (2) With the evolution of the magma produced by the partial melt of the mantle, strong differentiation has been shown between IPGE and PPGE; and the differentiation from pyroxenite to basalt would have been more and more distinct. (3) The magma forming ophiolite in Kudi probably suffered S-saturation process.
Resumo:
A supported heteropolyacid (HPA), H3PMo12O40/SiO2, calcined in vacuum at 150 degrees C, has been shown to be an efficient solid acid catalyst for the synthesis of 2-butoxy ethanol with high selectivity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Alcohols were derivatised to their carbazole-9-N-acetic acid (CRA) esters with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC . HCl) as the dehydrating agent. Studies on derivatisation conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives. The retention behaviour of alcohol derivatives was investigated by varying mobile phase compositions (ACN-water and MeOH-water). The parameters from the equation log k'=A-BX were evaluated by retention data of derivatives using an isocratic elution with different mobile phases. The results indicated that the parameters derived allowed computation of retention factors in good agreement with experiments. At the same time, a general equation was derived that makes possible predictions of partition coefficient in binary mobile phases with different proportions of organic solvent to water based on some simple regression analysis. The LC separation for the derivatised alcohols containing higher carbon alcohols showed good reproducibility on a reversed-phase C-18 column with gradient elution. The detection limits (excitation at 335 nm, emission at 360 nm) for derivatised alcohols (signal-to-noise ratio=3:1) were in the range of 0.1-0.4 pg per injection. (C) 2001 Elsevier Science B.V. All rights reserved.