113 resultados para Radioactive waste sites
Resumo:
The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.
Resumo:
The surface sites of sulfated zirconia were investigated in situ by laser-induced fluorescence spectroscopy using aniline as the probe molecule. Different from the cases for many other oxides, the aniline adsorbed on the unique active sites of sulfated zirconia at r.t. is changed into another species, which emits a characteristic fluorescence band at 422 nm. The results illustrate that the sulfate groups in sulfated zirconia are favorable for the generation of these unique active sites, which also rarely exist on pure zirconia composed of tetragonal and monoclinic phases but do not exist on pure zirconia composed of monoclinic phase. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The acid properties of Mo/HMCM-22 catalyst, which is the precursor form of the working catalyst for methane aromatization reaction, and the synergic effect between Mo species and acid sites were studied and characterized by various characterization techniques. It is concluded that Bronsted and Lewis acidities of HMCM-22 are modified due to the introduction of molybdenum. We suggest a monomer of Mo species is formed by the exchange of Mo species with the Bronsted acid sites. On the other hand, coordinate unsaturated sites (CUS) are suggested to be responsible for the formation of newly detected Lewis acid sites. Computer modelling is established and coupling with experimental results, it is then speculated that the effective activation of methane is properly accomplished on Mo species accommodated in the 12 MR supercages of MCM-22 zeolite whereas the Bronsted acid sites in the same channel system play a key role for the formation of benzene. A much more pronounced volcano-typed reactivity curve of the Mo/HMCM-22 catalysts, as compared with that of the Mo/HZSM-5, with respect to Mo loading is found and this can be well understood due to the unique channel structure of MCM-22 zeolite and synergic effect between Mo species and acid sites.
Resumo:
The catalytic performances of methane dehydroaromatization (MDA) under non-oxidative conditions over 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time at 773 K have been investigated in combination with ex situ H-1 MAS NMR characterization. Prolongation of the calcination time at 773 K is in favor of the diffusion of the Mo species on the external surface and the migration of Mo species into the channels, resulting in a further decrease in the number of Bronsted acid sites, while causing only a slight change in the Mo contents of the bulk and in the framework structure of the HZSM-5 zeolite. The MoQ(x) species associated and non-associated with the Bronsted acid sites can be estimated quantitatively based on the 1H MAS NMR measurements as well as on the assumption of a stoichiometry ratio of 1: 1 between the Mo species and the Bronsted acid sites. Calcining the 6 wt.% Mo/HZSM-5 catalyst at 773 K for 18 h can cause the MoOx species to associate with the Bronsted acid sites, while a 6 Wt-% MO/SiO2 sample can be taken as a catalyst in which all MoOx species are non-associated with the Bronsted acid sites. The TOF data at different times on stream on the 6 wt.% Mo/HZSM-5 catalyst calcined at 773 K for 18 h and on the 6 Wt-% MO/SiO2 catalyst reveal that the MoCx species formed from MoOx associated with the Bronsted acid sites are more active and stable than those formed from MoOx non-associated with the Bronsted acid sites. An analysis of the TPO profiles recorded on the used 6 wt.% Mo/HZSM-5 catalysts calcined for different durations of time combined with the TGA measurements also reveals that the more of the MoCx species formed from MoOx species associated with the Br6nsted acid sites, the lower the amount of coke that will be deposited on it. The decrease of the coke amount is mainly due to a decrease in the coke burnt-off at high temperature. (c) 2005 Elsevier B.V. All rights reserved.