165 resultados para Pore-forming proteins
Resumo:
For the first time, a novel prefractionation method used in proteomic analysis was developed, which is performed by a novel aqueous two-phase system (NATPS) composed of n-butanol, (NH4)(2)SO4, and water. It can separate proteomic proteins into multigroups by one-step extraction. The phase-separation conditions of n-butanol solutions were studied in the presence of commonly used inorganic salts. The NATPS was subsequently developed. Using human serum albumin, zein, and gamma-globulin as model proteins, the separation effectiveness of the NATPS for protein was studied under affection factors, i.e., pH, n-butanol volume, protein, or salt concentration. The model and actual protein samples were separated by the NATPS and then directly used for gel electrophoresis without separating the target proteins from phase-forming reagents. It revealed that the NATPS could separate proteomic proteins into multigroups by one-step extraction. The NATPS has the advantages of rapidity, simplicity, low cost, biocompability, and high efficiency. It need not separate target proteins from the phase-forming reagents. The NATPS has great significance in separation and extraction of proteomic proteins, as well as in methodology.
Resumo:
Morphological features of isotactic polypropylene (iPP) and high impact polypropylene (hiPP) particles produced in a multistage polymerization process were investigated by field-emission electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. Study was mainly focused on architecture of iPP particle and distribution of elastomer phase (EPR) within the preformed iPP matrix. The iPP particle is an agglomerate of many subglobules (ca. several to hundred microns in diameter), while the subglobule in turn is formed by a great deal of primary globules (ca. 100 nm in diameter). Large macropores between the subglobules and finely distributed micropores within the subglobule constitute a network of pore inside the iPP particle. Ethylene/propylene comonomers can diffuse into the macro- and micropores and copolymerize on catalyst active sites located on periphery of the pores, forming elastomer phase inside.
Resumo:
Siliceous mesostructured cellular foam with three-dimensional (3D) wormhole structure (MSU-type) is prepared by using triblock copolymer (poly(styrene-b-butadiene-b- styrene), SBS) with both hydrophobic head and tail group as template in strong acid condition via microemulsion method. The effects of SBS addition and temperature on the morphology and physicochemical properties, such as pore diameters, surface areas and pore volumes of the materials have been investigated by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM) and nitrogen adsorption-desorption analysis. The results show that the pore volumes, pore sizes and specific surface areas depend strongly on the SBS amount and forming micelles temperature. Moreover, the materials obtained with high wall thickness exhibit a relatively good thermal stability.