143 resultados para Polymers -- Testing
Resumo:
Three kinds of hydroxy-terminated oligomers were synthesized and characterized by IR, DSC and GPC. The oligomers were crosslinked by melaminealdehyde resin. The orientation and relaxation of the poled and crosslinked polymers were studied by UV-Vis spectra. It was shown that polymers had high orientational stability after corona-poling and crosslinking.
Resumo:
Synthesis and characterization of a diamino dihydroxyl azo compound were reported, The crosslinking reaction process of the diamino dihydroxyl azo compound with the biuret of hexamethylene diisocyanate was studied by FTIR, The glass transition temperatures of crosslinked polymers were measured by DSC, The orientation and oriented stability of crosslinked and poled polymers were studied by UV-Vis spectra.
Resumo:
A strong strain-rate and temperature dependence was observed for the fracture toughness of phenolphthalein polyether ketone (PEK-C). Two separate crack-blunting mechanisms have been proposed to account for the fracture-toughness data. The first mechanism involves thermal blunting due to adiabatic heating at the crack tip for the high temperatures studied. In the high-temperature range, thermal blunting increases the fracture toughness corresponding to an effectively higher test temperature. However, in the low-temperature range, the adiabatic temperature rise is insufficient to cause softening and Jic increases with increasing temperature owing to viscoelastic losses associated with the p-relaxation there. The second mechanism involves plastic blunting due to shear yield/flow processes at the crack tip and this takes place at slow strain testing of the single-edge notched bending (SENB) samples. The temperature and strain-rate dependence of the plastic zone size may also be responsible for the temperature and strain-rate dependence of fracture toughness.
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
Thermal decomposition processes of poly(thio-1,4-phenylene) (PPS), polythiophene (PT) and polyaniline (PAn) were investigated by direct pyrolysis EI or CI mass spectrometry (DPMS). They can provide up to heptemer pyrolynates and give some structure properties. The results indicate that the thermal degradation all undergoes in radical decomposition, PPS pyrolyzes into linear and cyclic oligmers, but PT and PAn pyrolyze only into linear oligmers.
Resumo:
The Gibbs free energies and equations of state of polymers with special molar mass distributions, e.g., Flory distribution, uniform distribution and Schulz distribution, are derived based on a lattice fluid model. The influence of the polydispersity (or t
Resumo:
In this paper, the Gibbs free energy, the equation of state and the chemical potentials of polydisperse multicomponent polymer mixtures are derived. For general binary mixtures of polydisperse polymers, we also give the Gibbs free energy, the equation of
Resumo:
For a binary mixture of polydisperse polymers with strong interactions, the free energy, the equation of state, the chemical potentials and the spinodal are formulated on the basis of the lattice fluid model. Further, the spinodal curves for the system wi
Resumo:
In an attempt to explore the effects of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical
Resumo:
Hydroxy-terminated oligomers, such as polyester, polyether, or castor oil, were reacted with toluene diisocyanate to form isocyanate-terminated prepolymers, which were then reacted with 2-hydroxyethyl acrylate to obtain vinyl-terminated prepolymer (VTP).
Resumo:
In order to study the oriented (epitaxial) crystallization of thermoplastic polymers on oriented polymer substrates, generally the transmission electron microscopy (TEM) is used. With this instrument, the crystallized material can easily be resolved and orientation relationships can be monitored by electron diffraction. Disadvantages are the time consuming sample preparations and difficulties in the in-situ observations of the crystallization events, because of the radiation sensitivity of the polymer crystals. It is demonstrated that these disadvantages of the TEM can be eleminated by the use of different methods of light optical contrasts under specific preparation conditions of the samples and that the optical microscopy being a supplementary method to the TEM for investigations of epitaxial crystallization.
Resumo:
In an attempt to explore the effect of structural multiplicity of polymers on the mechanism of radiation crosslinking, the adaptability of the Charlesby-Pinner's equation and its various modified versions are examined. It is recognized that both chemical and morphological multiplicity of polymer structure results in the multiplicity of crosslinking mechanism, and that any single equation can only be applicable to a certain step of the whole radiation process.
Resumo:
Polymers of methyl-iso-propyl fumarate, di-iso-propyl fumarate, di-t-butyl fumarate, di-s-butyl fumarate, di-s-amyl fumarate and di-cyclo-hexyl fumarate were prepared by radical polymerization. The structures of the polymers were examined by H-1-NMR, C-13-NMR and WAXD. Some properties of the polymers, including thermal properties, were examined.
Resumo:
A statistical thermodynamics theory of polydisperse polymers based on a lattice model of fluids is formulated. Pure polydisperse polymer can be completely characterized by three scale factors and the molecular weight distribution of the system. The equation of state does not satisfy a simple corresponding-states principle, except for a polymer fluid of sufficiently high molecular weight. The relationships between thermal expansion coefficient alpha and isothermal compressibility beta with reduced variables are also predicted.
Resumo:
By using WAXD, DSC and gel fraction determination techniques, the mechanism of radiation crosslinking of polyethylene oxide (PEO) was explored, and the dependence of aggregated state on the chemical reaction and physical structure was also discussed. It was found that just like other semi-crystalline polymers, the state of aggregation of the specimen has a profound influence on the radiation effects on PEO. On the contrary, the crystalline structure of the specimen is severely affected with the increase in radiation dose and eventually amorphortized when subjected to an extremely high radiation dose.