352 resultados para Photonic bandgap fiber
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper we theoretically study the left-handed behaviors in a two-dimensional triangular photonic crystal made of elliptical rods in air. An absolute left-handed region is found in the second photonic band by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Typical left-handed behaviors such as negative refraction, flat superlensing and plano-concave lensing are demonstrated by the finite-difference time-domain simulations. These behaviors are also compared with the quasi-negative refraction and the resulted focusing effects in a square-lattice two-dimensional photonic crystal. (c) 2005 Optical Society of America
Resumo:
We systematically investigate the square-lattice dielectric photonic crystals that have been used to demonstrate flat slab imaging experimentally. A right-handed Bloch mode is found in the left-handed frequency region by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Using the multiple scattering theory, numerical simulations demonstrate that the left-handed mode and the right-handed mode are excited simultaneously by a point source and result in two kinds of transmitted waves. Impacted by the evanescent waves, superposition of these transmitted waves brings on complicated near field distributions such as the so-called imaging and its disappearance.
Resumo:
In contrast to previous two-dimensional coated photonic crystals, in this paper we propose a left-handed one that is made of dielectric tubes arranged in a close-packed hexagonal lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. Negative refraction and its resulting focusing are investigated by dispersion characteristic analysis and numerical simulation of the field pattern. With proper modification at the interface, the image is improved. With better isotropy than that with noncircular rods, planoconcave lenses made by dielectric tubes focus a Gaussian beam exactly at R//n - 1/.
Resumo:
As distinct from coated photonic crystals, in this paper we propose a novel one that is made of dielectric tubes arranged in a close-packet square lattice. Without metallic cores, this structure is low-loss and convenient to fabricate. A left-handed frequency region is found in the second band by dispersion characteristic analysis. Without inactive modes for the transverse electric mode, negative refraction and subwavelength imaging are demonstrated by the finite-difference time-domain simulations with two symmetrical interfaces, i.e. Gamma X and Gamma M.
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Stable single-frequency and single-polarization distributed-feedback (DFB) fiber laser was realized by giving a pressure on the phase shift region of the fiber grating. The output wavelength of the DFB fiber laser is 1053 nm. When the pump power of 980 nm laser diode is 100 and 254 mW, the output power can reach 8.3 and 37.1 mW and the polarization extinction ratio was 26 and 20 dB, respectively. After chopped by Acousto-optic modulator (0.3 Hz), the pulse peak value variance is 4.65%(peak to peak) and 1.098% (RMS) for 31 min. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we theoretically investigate a photonic crystal with dielectric rods in a honeycomb lattice. Two left-handed frequency regions are found in the second and third photonic band by using the plane wave expansion method to analyze the photonic band structure and equifrequency contours. Subwavelength imaging by the photonic crystal flat lens are systematically studied by numerical simulations using the multiple scattering method. Different from the photonic crystals with noncircular dielectric rods in air, this structure is almost isotropic at the optimal frequency for superlensing. As a comparison, flat slab focusing is also demonstrated at other frequencies in the two left-handed regions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Incorporating the shielded method and post-processing method, a 75 mW single frequency Yb-doped DFB fiber laser was obtained with a 250 mW laser diode pump source at 978 nm. The threshold of the laser is 2 mW. The laser is single-polarization operation and the output power fluctuation is less than 0.2 mW in one hour when the pump power is 250 mW.
Resumo:
A master-oscillator fiber power amplifier (MOPA) system with a 4-m-long Yb3+-doped homemade large mode area (LMA) double-clad fiber is reported. The system emits up to 133.8 W of amplified radiation at a wavelength of 1064 nm and a repetition rate of 100 kHz, limited only by the available pump power. Peak power of 300 kW at 20 kHz with a pulse duration of 15 ns is obtained. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Phase locking of two fiber lasers is demonstrated experimentally by the use of a self-imaging resonator with a spatial filter. The high-contrast interference strips of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 12W and the efficiency of coherent power combination is 88% with pump power of 60W. The whole system operates quite stably and, for the spatial filter, no thermal effects have been observed, which means that we can increase the coherent output power further by this method. (c) 2006 Optical Society of America
Resumo:
The output spectrum of Yb-doped double-clad fiber superfluorescent source (SFS) is tailored by placing a broadband dichroic mirror in the pump end of conventional single-pass forward configuration, which constitutes double-pass forward configuration. The 3 dB bandwidth is increased from I I to 42 nm. A maximum output SFS power of 2.12 W and a slope efficiency of 43.2% are obtained. The double-clad fiber is 25 in and the pump power is adequate to saturate the fiber as far as the feedback-induced lasing appears. (c) 2004 Elsevier Ltd. All rights reserved.