135 resultados para Permeation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solutions of polyaniline (PAn), poly(ortho-toluidine) (POT) and poly(ortho-anisidine) (PAs) in N-methyl pyrrolidinone (NMP) were examined by viscometric, gel permeation chromatographic (GPC) and theological methods. Strong intermolecular interaction and molecular aggregation are shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and properties of presumed block copolymers of polypropylene (PP) with ethylene-propylene random copolymers (EPR), i.e., PP-EPR and PP-EPR-PP, have been investigated by viscometry, transmission electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, gel permeation chromatography, wide-angle x-ray diffraction, and other techniques testing various mechanical properties. PP-EPR and PP-EPR-PP were synthesized using delta-TiCl3-Et2AlCl as a catalyst system. The results indicate that the intrinsic viscosity of these polymers increases with each block-building step, whereas the intrinsic viscosity of those prepared by chain transfer reaction (strong chain-transfer reagent hydrogen was introduced between block-building steps during polymerization) hardly changes with the reaction time. Compared with PP / EPR blends, PP-EPR-PP block copolymers have lower PP and polyethylene crystallinity, and lower melting and crystallization temperatures of crystalline EPR. Two relaxation peaks of PP and EPR appear in the dynamic spectra of blends. They merge into a very broad relaxation peak with block sequence products of the same composition, indicating good compatibility between PP and EPR in the presence of block copolymers. Varying the PP and EPR content affects the crystallinity, density, and morphological structure of the products, which in turn affects the tensile strength and elongation at break. Because of their superior mechanical properties, sequential polymerization products containing PP-EPR and PP-EPR-PP block copolymers may have potential as compatibilizing agents for isotactic polypropylene and polyethylene blends or as potential heat-resistant thermoplastic elastomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the prediction of gas permeabilities (P) through polymers from their chemical structure has been developed on the basis of the ratio of molar free volume to molar cohesive energy, V(f)/E(coh). The permeation of small gas molecules through polymer membranes is dependent on the chain packing density measured by V(f) and segmental motion of polymer chains measured by E(coh). But no simple relationship between P and V(f) or E(coh) alone was found. The permeability data of more than 60 polymers covering 7 orders of magnitude for six gases have been treated with linear regression analysis. All plots of log P vs. V(f)/E(coh) gave good straight lines. It is also found that a linear relationship holds when plotting both the intercepts and slopes of log P vs. V(f)/E(coh) lines against square of the diameters of gas molecules. Therefore, the permeabilities of all the non-swelling gases through a great variety of polymers can be estimated using two correlations above. Moreover, this method is more accurate than others in the literature and may found useful for the selection of gas separation or barrier membrane materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

氢渗透和拉应力的联合作用对海洋环境中的热浸镀钢材的安全构成潜在威 胁,本文以当前应用最广泛的三种商业化热浸镀钢材(热浸镀锌、锌-5%铝-稀土和锌-55%铝-1.6%硅)为研究对象,采用Devanathan-Stachurski双面电解池测试技术,测试了自渗氢电流密度曲线,研究了镀层与缺陷比例对氢渗透电流的影响,比较了镀层的氢渗透抑制性能及存在缺陷时的自渗氢能力,并结合镀层成分、结构及其腐蚀机理,探讨了其氢渗透机理;通过慢应变速率拉伸实验,获得了热浸镀钢材在不同充氢条件下的应力-应变曲线,比较了其力学性能参数,并配合断口的显微分析,评价了三种热浸镀钢材在海水中的氢脆敏感性,并对其氢脆机理进行了探讨。主要结果如下: (1) 热浸镀锌镀层的氢渗透抑制能力最弱,锌-5%铝-稀土镀层的氢渗透抑制能力较强,镀层存在缺陷时导致的阴极保护能促进氢渗透;锌-55%铝-1.6%硅镀层的氢渗透抑制能力最强,镀层存在缺陷时基本没有氢渗透电流。当镀层存在缺陷时,氢渗透电流密度的最大值随着镀层与暴露的钢材基体的面积比增大而增大。随着镀层中铝含量的增加,镀层结构越致密,镀层的耐腐蚀性能越好,完整镀层的氢渗透抑制能力越强,镀层存在缺陷时的自渗氢能力越弱。 (2) 热浸镀锌和锌-5%铝-稀土镀层钢材在海水中的氢渗透能明显降低材料的断后延伸率和能量密度,使其断裂方式由韧性转变为准解理;锌-55%铝-1.6%硅镀层在海水中对钢材基体进行阴极保护导致的氢渗透虽能显著降低其断后延伸率和能量密度,但其断裂方式以韧性为主,且断口存在局部的准解理撕裂形貌。随着预浸泡时间的增长,材料充氢量的增加,三种热浸镀钢材的氢脆敏感性提高。随着镀层铝含量的增加,热浸镀钢材在海水中的氢脆敏感性降低。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

硫酸盐还原菌(SRB)活动、拉应力和氢的联合作用将对海洋环境中热浸镀锌钢材构筑物的安全带来隐患。本文通过Devanathan-Stachurski双面电解池测试技术,检测了镀层完好及存在缺陷的热浸镀锌钢材在灭菌海水、灭菌培养基及接种SRB的培养基中的氢渗透电流曲线,探讨了镀层缺陷、培养基成分以及SRB对热浸镀锌钢材氢渗透行为的影响;采用电化学阻抗谱测试技术,研究了热浸镀锌钢材在上述介质中的腐蚀机制,并由此讨论了热浸镀锌钢材在不同条件下的氢渗透机制;通过慢应变速率拉伸试验(SSRT),获得了热浸镀锌钢材在不同腐蚀介质中的应力-应变曲线,比较了其力学性能参数,进而通过断口分析,评价了热浸镀锌钢材在灭菌海水、灭菌培养基及接种SRB培养基中的氢脆敏感性。研究结果表明: (1) 镀层出现缺陷将对热浸镀锌钢材的氢渗透行为起促进作用,这类试样在灭菌海水和灭菌培养基中的平均氢渗透电流密度比镀层完好试样在相同介质中的平均氢渗透电流密度分别提高了250.76%和32.76%;培养基组分对热浸镀锌钢材的氢渗透行为起促进作用,镀层存在缺陷和镀层完好的热浸镀锌钢材试样在灭菌培养基中的平均氢渗透电流密度分别比其在灭菌海水中高181.22%和626.97%;SRB对热浸镀锌钢材的氢渗透行为起抑制作用,镀层存在缺陷及镀层完好的热浸镀锌钢材试样在接种SRB的培养基中的平均氢渗透电流密度分别比灭菌培养基中低90.84%、77.14%。 (2) 电化学测试结果表明,培养基组分能够加速热浸镀锌钢材的腐蚀,使试样表面更容易形成腐蚀缺陷,从而增加其自渗氢能力;活性SRB本身对热浸镀锌钢材的腐蚀和氢渗透起促进作用,但在本文实验条件下,SRB及其代谢产物形成的生物膜以及腐蚀产物组成的致密膜层能够通过阻挡层作用抑制腐蚀,并阻止氢的进入;扫描电镜(SEM)分析结果表明,暴露于接种SRB培养基中的热浸镀锌钢材试样表面有致密的产物膜层,而灭菌培养基中的试样表面没有明显腐蚀产物膜存在。 (3) 培养基组分对热浸镀锌钢材氢渗透行为的促进作用增加了其对氢脆的敏感性,热浸镀锌钢材在灭菌培养基中的断后延伸率和能量密度比在灭菌海水中分别降低了4.97%和5.59%;SRB对热浸镀锌钢材氢渗透行为的抑制作用降低了其对氢脆的敏感性,热浸镀锌钢材在接种SRB的培养基中的断后延伸率和能量密度比其在灭菌培养基中分别高7.78%和8.44%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

海洋大气腐蚀环境是海洋腐蚀环境之一。金属材料在海洋大气环境下会发生环境敏感断裂。在环境敏感断裂中,氢脆是其中的一个重要类型。氢脆是合金中存在过量的氢,并在拉应力协同作用下造成的一种脆断。氢渗透已被证明是金属材料失效的主要原因之一。氢脆导致了材料强度降低,在较低载荷下会导致材料的灾害性破坏,因此研究海洋用钢在海洋大气中的致脆机制与氢渗透行为是十分必要的。本文所做工作主要有以下几点: 一、 采用Devanathan-Stachurski氢渗透技术,研究了35CrMo高强度钢未受 力试样在海洋大气腐蚀环境中的氢渗透及腐蚀失重行为。主要分为两个部分:(1) 干湿循环实验;(2)模拟海洋大气腐蚀实验。实验结果表明,在海洋大气腐蚀环境中,35CrMo 高强度钢存在着明显的氢渗透现象,在不同腐蚀环境中现象有所不同。Cl-离子、H2S、SO2等污染物对氢渗透产生了明显的促进作用。另外,氢渗透量与腐蚀失重存在着明显的线性关系。 二、 采用慢应变速率拉伸实验法(SSRT),在海洋大气腐蚀环境中对35CrMo试样进行力学性能测试,研究氢渗透对35CrMo应力腐蚀开裂敏感性的影响。实验结果表明,在各种腐蚀条件下,氢渗透会增加35CrMo的应力腐蚀开裂敏感性,使得最大载荷、断裂时间及应变值均减小。 三、 采用Devanathan-Stachurski氢渗透技术与慢应变速率拉伸实验法,进行了35CrMo高强度钢受力试样在海洋大气环境中的氢渗透实验,研究材料形变对氢渗透的影响。实验结果表明,在弹性变形阶段,氢渗透电流逐渐增大,在塑性变形阶段开始后,氢渗透逐渐减小,在塑性变形阶段后期,随着形变的增大,氢渗透电流增大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oligosaccharides were prepared through mild hydrochloric acid hydrolysis of kappa-carrageenan from Kappaphycus striatum to compare the antitumor activity with carrageenan polysaccharides. Oligosaccharide fractions were isolated by gel permeation chromatography and the structure of fraction 1 (F1) was studied by using negative- ion electrospray ionization-mass spectrometry (ESI-MS), and H-1 and C-13-NMR spectrometry. The in vitro antitumor effects in three human neoplastic cell lines (KB, BGC, and Hela) of polysaccharides and F1 were investigated. The bioassay results showed that F1 exhibited relatively higher antitumor activity against the three cancer cells than polysaccharides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polysaccharides extracted from Ulva pertusa Kjellm ( Chlorophyta) are a group of sulfated heteropolysaccharides, the ulvans. In this study, different molecular weight ulvans were prepared by H2O2 degradation and their antioxidant activities investigated including superoxide and hydroxyl radical scavenging activity, reducing power and metal chelating ability. The molecular weights of natural and degraded ulvans were 151.7, 64.5, 58.0, and 28.2 kDa, respectively, as determined by high performance gel permeation chromatography. Among the four samples, U-3 ( the lowest molecular weight sample) showed significant inhibitory effects on superoxide and hydroxyl radicals with IC50 values of 22.1 mu g mL(-1) and 2.8 mg mL(-1); its reducing power and metal chelating ability were also the strongest among the four samples. All the other samples also demonstrated strong activity against superoxide radicals. The results indicated that molecular weight had a significant effect on the antioxidant activity of ulvan with low molecular weight ulvan having stronger antioxidant activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen entry and permeation into iron were measured by an electrochemical method during atmospheric corrosion reaction. The hydrogen permeation was enhanced on passive films because the hydrogen adsorption increased by the hydrogen evolution mechanism which is different from that on a bear iron surface. The permeation rate during a wet and dry corrosion cycle showed a maximum in the drying process depending upon the surface pH and the corrosion potential. The pollutant such as Na2SO3 which decreases the pH and the corrosion potential causes an increase in the permeation rate. The mechanism of the change in the permeation rate during the wet and dry cycles is explained by the polarization diagram of the electrode covered by thin water layer. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

介绍了管线钢硫化物应力腐蚀裂开危险性智能探测仪的设计、结构和检测结果。该检测仪具有数据采集、存储处理、逻辑判断和现场制表打印输出评价/判断等功能,对及时发现和消除含硫油气管线的隐患,以防止恶性破坏事故的发生有重要意义。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/gamma-Al2O3 at temperatures of 800-900 degreesC. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm(-2) min(-1). After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm(-2) min(-1). SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 degreesC for more than 100 h without failure, with ethane conversion of similar to 100%, CO selectivity of >91% and oxygen permeation fluxes of 10-11 ml cm(-2) min(-1). (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pd and Pd-Ag (24 wt.%) alloy composite membrane were prepared by electroless plating and magnetron sputtering, respectively. The membranes were characterized by scanning electron microscopy (SEM) and H-2 permeation measurement. Commercial microfiltration ceramic membrane were coated with gamma-Al2O3-based layer by the sol-gel method and used as substrate of Pd and Pd-Ag alloy film. Both the as-prepared membranes were shown: to be He gas-tight at room temperature with a thickness of <1 mu m. Permeation results showed that H-2 permeation through these composite membranes is mainly dominated by the surface chemistry of H-2 on or/and in the membranes. The membranes exhibited a high permeation rate of H-2 and a H-2/N-2 permselectivity of higher than 60 in the optimized operation conditions. (C) 2000 Elsevier Science B.V. All rights reserved.