326 resultados para PVC film


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Via the combination of an electrospinning method with a hydrothermal reaction, a large-scale cedar-like hierarchical nanostructured TiO2 film with an anatase/rutile composite phase was fabricated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 5.35-mu m-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) omega-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction theta - 2. scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper has systematically investigated the substrate temperature and thickness dependence of surface morphology and magnetic property of CrAs compound films grown on GaAs by molecular-beam epitaxy. It finds that the substrate temperature affects the surface morphology and magnetic property of CrAs thin film more potently than the thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the metalorganic chemical vapour deposition growth of AlN, by adjusting H-2+N-2 mixture gas components, we can gradually control island dimension. During the Volmer - Weber growth, the 2-dimensional coalescence of the islands induces an intrinsic tensile stress. Then, this process can control the in-plane stress: with the N-2 content increasing from 0 to 3 slm, the in-plane stress gradually changes from 1.5 GPa tensile stress to - 1.2GPa compressive stress. Especially, with the 0.5 slm N-2 + 2.5 slm H-2 mixture gas, the in-plane stress is only 0.1 GPa, which is close to the complete relaxation state. Under this condition, this sample has good crystal and optical qualities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ZnO films deposited by magnetron sputtering were treated by H/O plasma. It is found that the field emission (FE) characteristics of the ZnO film are considerably improved after H-plasma treatment and slightly deteriorated after O-plasma treatment. The improvement of FE characteristics is attributed to the reduced work function and the increased conductivity of the ZnO H films. Conductive atomic force microscopy was employed to investigate the effect of the plasma treatment on the nanoscale conductivity of ZnO, these findings correlate well with the FE data and facilitate a clearer description of electron emission from the ZnO H films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mode characteristics of SOI (silicon-on-insulator) submicron rib waveguides are very different from those of micrometer-sized ones. Using the full-vector film mode matching method, we propose a simple criterion to determine whether a waveguide mode is guided or not. The single-mode condition for deep-etched waveguides is obtained using this criterion. We also obtain the inherent TM mode leakage and sharp cancelation effects due to TE-TM mode coupling in shallow-etched rib waveguides from numerical simulations, which agree well with the analytical results based on total internal reflection and interference theories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO film of 8 mu m thickness was grown on a sapphire (0 0 1) substrate with a GaN buffer layer by a novel growth technique called metal-source vapor phase epitaxy (MVPE). The surface of ZnO film measured by scanning electron microscope (SEM) is smooth and shows many regular hexagonal features. The full width at half maximum (FWHM) of ZnO(0 0 2) and (1 0 2) omega-scan rocking curves are 119 and 202 arcsec, corresponding a high crystal quality. The status of the strain in ZnO thick film was particularly analyzed by X-ray diffraction (XRD) omega-20 scanning. The results show that the strain in ZnO film is compressive, which is also supported by Raman scattering spectroscopy. The compressive strain can solve the cracking problem in the quick growth of ZnO thick film. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A GaN film with a thickness of 250 mu m was grown on a GaN/sapphire template in a vertical hydride vapor phase epitaxy (HVPE) reactor. The full-width at half-maximum (FWHM) values of the film were 141 and 498 arcsec for the (0 0 2) and (1 0 2) reflections, respectively. A sharp band-edge emission with a FWHM of 20 meV at 50 K was observed, which corresponded to good crystalline quality of the film. Some almost circular-shaped hillocks located in the spiral growth center were found on the film surface with dimensions of 100 mu m, whose origin was related to screw dislocations and micropipes. Meanwhile, large hexagonal pits also appeared on the film surface, which had six triangular {1 0 (1) over bar 1} facets. The strong emission in the pits was dominated by an impurity-related emission at 377 nm, which could have been a high-concentration oxygen impurity. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effect of low-temperature-deposited (LT) and high-temperature-deposited (FIT) AlN interlayer with various thickness on AlGaN film grown on GaN using c-plane sapphire as substrate. All the Al0.25Ga0.75N films thicker than 1 mum with LT-AlN interlayer or with HT-AlN interlayer were free of cracks, however, their surfaces were different: the Al0.25Ga0.75N films with LT-AlN interlayer showed smooth surface, while those with HT-AlN interlayer exhibit rough surface morphology. The results of X-ray double crystal diffraction and Rutherford backscattering showed that all of the AlGaN films were under compressive strain in the parallel direction. The compressive strain resulted from the effect of interlayer-induced stress relieving and the thermal mismatch for the samples with LT-AlN interlayer, and it was due to the thermal mismatch between AlGaN and the underlying layers for those with HT-AlN interlayer. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase gadolinium disilicide was fabricated by a low-energy ion-beam implantation technique. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine the composition and chemical states of the film. The structure of the sample was analyzed by X-ray diffraction and the surface morphology was investigated by scan electron microscopy. Based on the measurements, only orthorhombic GdSi2 phase was found in the sample and the surface morphology was pitting. After annealing at 350degreesC for 30 min at Ar atmosphere, the full-width at half-maximum of GdSi2 became narrower. It indicates that the GdSi2 is crystallized better after annealing. (C) 2003 Elsevier B.V. All rights reserved.