129 resultados para PHYSICAL EVAPORATION
Resumo:
The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes No252-254 were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a Ca-48 beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.
Experimental study of the U-238(S-36,3-5n)(269-271)Hs reaction leading to the observation of (270)Hs
Resumo:
The deformed doubly magic nucleus (270)Hs has so far only been observed as the four-neutron (4n) evaporation residue of the reaction Mg-26+Cm-248, where a maximum cross section of 3 pb was measured. Theoretical studies on the formation of (270)Hs in the 4n evaporation channel of fusion reactions with different entrance channel asymmetry in the framework of a two-parameter Smoluchowski equation predict that the reactions Ca-48+Ra-226 and S-36+U-238 result in higher cross sections due to lower reaction Q values, in contrast to simple arguments based on the reaction asymmetry, which predict opposite trends. Calculations using HIVAP predict cross sections for the reaction S-36+U-238 that are similar to those of the Mg-26+Cm-248 reaction. Here, we report on the first measurement of evaporation residues formed in the complete nuclear fusion reaction S-36+U-238 and the observation of (270)Hs, which is produced in the 4n evaporation channel, with a measured cross section of 0.8(-0.7)(+2.6) pb at 51-MeV excitation energy. The one-event cross-section limits (68% confidence level) for the 3n, 4n, and 5n evaporation channels at 39-MeV excitation energy are 2.9 pb, while the cross-section limits of the 3n and 5n channel at 51 MeV are 1.5 pb. This is significantly lower than the 5n cross section of the Mg-26+Cm-248 reaction at similar excitation energy.
Resumo:
A methodological survey of microsphere formation and microencapsulation techniques based on solvent extraction/evaporation techniques is presented. Thus, basic features of solvent extraction and solvent evaporation processes, including droplet formation, droplet/particle stabilization, and solvent removal, are outlined. Preparation of a wide range of microspherical and microcapsular products based on biodegradable polyesters, polysaccharides, and nonbiodegradable polymers are discussed. Dependence of microcapsule characteristics on manufacturing parameters, as well as performance evaluation of microspherical and microcapsular products, are also briefly covered.
Resumo:
A predictive and self-consistent mathematical model incorporating the electrochemical, chemical and ionic migration processes characterizing the propagation stage of crevice and pitting corrosion in metals is described. The model predicts the steady-state solution chemistry and electrode kinetics (and hence metal penetration rates) within an active corrosion cavity as a function of the many parameters on which these depend, such as external electrode potential and crevice dimensions. The crevice is modelled as a parallel-sided slot filled with a dilute sodium chloride solution. The cavity propagation rates are found to be faster in the case of a crevice with passive walls than one with active walls. The distribution of current over the internal surface of a crevice with corroding walls can be assessed using this model, giving an indication of the future shape of the cavity. The model is extended to include a solid hydroxide precipitation reaction and considers the effect of consequent changes in the chemical and physical environment within the crevice on the predicted corrosion rates. In this paper, the model is applied to crevice and pitting corrosion in carbon steel.
Resumo:
Turnover of soil organic matter (SOM) is coupled to the cycling of nutrients in soil through the activity of soil microorganisms. Biological availability of organic substrate in soil is related to the chemical quality of the organic material and to its degree of physical protection. SOM fractions can provide information on the turnover of organic matter (OM), provided the fractions can be related to functional or structural components in soil. Ultrasonication is commonly used to disrupt the soil structure prior to physical fractionation according to particle size, but may cause redistribution of OM among size fractions. The presence of mineral particles in size fractions can complicate estimations of OM turnover time within the fractions. Densiometric separation allows one to physically separate OM found within a specific size class from the heavier-density mineral particles. Nutrient contents and mineralization potential were determined for discrete size/density OM fractions isolated from within the macroaggregate structure of cultivated grassland soils. Eighteen percent of the total soil C and 25% of the total soil N in no-till soil was associated with fine-silt size particles having a density of 2.07-2.21 g/cm3 isolated from inside macroaggregates (enriched labile fraction or ELF). The amount of C and N sequestered in the ELF fraction decreased as the intensity of tillage increased. The specific rate of mineralization (mug net mineral N/mug total N in the fraction) for macroaggregate-derived ELF was not different for the three tillage treatments but was greater than for intact macroaggregates. The methods described here have improved our ability to quantitatively estimate SOM fractions, which in turn has increased our understanding of SOM dynamics in cultivated grassland systems.
Resumo:
黄土高原半干旱区土壤蒸发强烈,准确地掌握土壤水分动态对于旱地农业水分管理至关重要。应用基于物理基础的一维水热耦合SHAW(The Simultaneous Heat and Water)模型,模拟了陕西子洲岔巴沟流域1964~1967年土壤水分和土壤蒸发的动态特征,以及神木六道沟流域2006年坡地和梯田土壤水分变化。结果表明,除表层土壤水分模拟结果偏差较大,其他土层模拟值与实测值基本吻合,模拟期土壤水分模拟的相对平均绝对误差(Relatively Mean Absolutely Error,RMAE)为5.2%~11.4%。1964~1967年土壤累积蒸发量模拟值与实测值平均相对偏差为0.8%~6.1%,土壤蒸发的模拟值与实测值较为一致。因此,SHAW模型可以用于黄土高原半干旱区农田土壤水分动态规律研究。
Resumo:
以酶凝干酪素的凝胶化过程为对象,利用有限元方法数值分析了在凝胶化过程中温度场的空间分布和时间演变规律.在此基础上,基于一阶的凝胶化动力学方程,数值模拟了凝胶体系的复剪切模量场,进而分析了材料配方、体系尺寸与冷却方案对复剪切模量场的影响规律.模拟结果表明,由于热阻的差异,体系表面的冷却速率大于内部,表面首先发生凝胶化;而由于预凝胶化阶段的平均冷却速率决定了无穷复剪切模量的值,最终体系内部的复剪切模量超过表面的.
Resumo:
A method was adopted to fix a series of polymers of PE-b-PEO with different PEO/PE segments on the chains of LLDPE. Maleic anhydride (MA) reacting with hydroxyl group of PE-b-PEO (mPE-b-PEO) was used as the intermediate. The structures of intermediates and graft copolymers were approved by H-1 NMR and FTIR. XPS analysis revealed a great amount of oxygen on the surface of grafted copolymers although the end group of PEO was fixed on the LLDPE chains through MA. Thermal properties of the graft copolymers as determined by differential scanning calorimetry (DSC) showed that PE segments in the grafted monomers could promote the heterogeneous nucleation of the polymer, increase T., and crystal growth rate.
Resumo:
The elastic and electronic properties of hypothetical CoN3 and RhN3 with cubic skutterudite structure were studied by first principles calculations based on density functional theory. By choosing different initial geometries, two local minima or modifications were located on the potential energy surface, termed as modifications I and II. Both compounds are mechanically stable. For each compound, modification I is lower in energy than II. Thermodynamically stable phases can be achieved by applying pressures. Modification II is lower in energy than I at above 50 GPa for both compounds.
Structures and physical properties of n=3 Ruddlesden-Popper compounds Ca4Mn3-xNbxO10 (0 <= x <= 0.2)
Resumo:
The Ruddlesden-Popper series of compounds Ca4Mn3-xNbxO10(x = 0-0.2) have been prepared by solid-state methods. Structural, magnetic, electrical, and magnetoresistive studies were performed on the compounds. Nb doping caused increases in both unit cell volume and octahedral distortion. The magnetization measurements indicated that the doped samples displayed ferromagnetism-like behavior, which could be explained by the double-exchange interaction between Mn4+ and Mn3+ induced by the charge-compensation effect.
Resumo:
Perovskite-type SrZrO3 has been investigated as a candidate material for thermal barrier coating application. During plasma spraying of SrZrO3, SrO volatilized more than ZrO2 and the coating composition deviates from initial stoichiometry. In this investigation, partial evaporation was investigated by spraying SrZrO3 powders into water. The influences of spraying current, distance and particle size of the powder on the partial evaporation were also investigated in a quantitative way. With optimized spraying parameters, stoichiometric SrZrO3 coating was produced by adding an excess amount of Sr in the precursors before plasma spraying to compensate for the volatilized component.
Resumo:
Double-ceramic-layer(DCL) thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies and cyclic oxidation behavior of the DCL coating were studied. Both the X-ray diffraction (XRD) and thermogravimetric-differential thermal analysis (TG-DTA) prove that LZ and YSZ have good chemical applicability to form a DCL coating. The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ coating. and even longer than that of the single layer YSZ coating. The failure of the DCL coating is a result of both the bond coat oxidation and the thermal strain between bond coat and ceramic layer generated by the thermal expansion mismatch.
Resumo:
The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.
Resumo:
Copolymers of linear low-density polyethylene (LLDPE) grafted with two novel nonionic surfactants, acrylic glycerol monostearate ester (AGMS) and acrylic polyoxyethylenesorbitan monooleate ester (ATW-EEN80), containing hydrophilic and hydrophobic groups and 1-olefin double bond were prepared by using a plasticorder at 190 degrees C. To evaluate the grafting degree, two different approaches based on H-1-NMR data were proposed, and FTIR calibration was showed to validate these methods. The rheological response of the molten polymers, determined under dynamic shear flow at small-amplitude oscillations, indicated that crosslinking formation of the chains could be decreased with increasing the monomer concentration. Their thermal behavior was studied by DSC and polarization microscope (PLM): The crystallization temperature (T-C) of grafted LLDPE shifted to higher temperature compared with neat LLDPE because the grafted chains acted as nucleating agents. Water and glycerol were used to calculate the surface free energy of grafted LLDPE films.
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.