167 resultados para PHA, BIOPLASTICA, DOWNSTREAM, NaOH
Resumo:
In this contribution, we report a facile, gram-scale, low-cost route to prepare monodisperse superparamagnetic single-crystal magnetite NPs with mesoporous structure (MSSMN) via a very simple solvothermal method. The formation mechanism of MSSMN is also discussed and we think that Ostwald ripening probably plays an important role in this synthesis process. It is also interestingly found that the size and morphology of mesoporous Fe3O4 NPs can be easily controlled by changing the amount of NaOH and 1,2-ethylenediamine (ETH). Most importantly, the MSSMN can be used as an effective drug delivery carrier. A typical anticancer drug, doxorubicin (Dox), is used for drug loading, and the release behaviors of Dox in two different pH solutions are studied. The results indicate that the MSSMN has a high drug loading capacity and favorable release property for Dox; thus, it is very promising for the application in drug delivery.
Resumo:
The selective hydrogenation of nitrobenzene (NB) over Ni/gamma-Al2O3 Catalysts Was investigated using different media of dense phase CO2, ethanol, and n-hexane. In dense phase CO2, the total rate of NB hydrogenation was larger than that in organic solvents under similar reaction conditions; the selectivity to the desired product, aniline, was almost 100% over the whole conversion range of 0-100%. The phase behavior of the reactant mixture in/under dense phase CO2 was examined at reaction conditions. In situ high-pressure Fourier transform infrared measurements were made to study the molecular interactions Of CO2 with the following reactant and reaction intermediates: NB, nitrosobenzene (NSB), and N-phenylhydroxylamine (PHA). Dense phase CO2 strongly interacts with NB, NSB, and PHA, modifying the reactivity of each species and contributing to positive effects on the reaction rate and the selectivity to aniline. A possible reaction pathway for the hydrogenation of NB in/under dense phase CO2 over Ni/gamma-Al2O3 is also proposed.
Resumo:
A facile and convenient synthesis of dihydropyranones has been developed by a formal [4+2] annulation of readily available alpha-acetyl ketene S,S-acetals with various aldehydes, involving a tandem aldol reaction and conjugate addition-elimination reaction, in the presence of NaOH in water.
Resumo:
In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/ AgCl), while Tym. was detected well on a platinum electrode at 1. 3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym. detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym. by the aptamers.
Resumo:
以玉米淀粉为原料,N-(2,3-环氧丙基)三甲基氯化铵(GTA)为阳离子醚化剂,在碱催化条件下,制备了高取代度阳离子淀粉,研究了反应条件对产品取代度和结构的影响。结果表明,在n(NaOH)/n(淀粉葡萄糖基AGU)=0.2025,n(GTA)/n(AGU)=4.0,反应温度60℃的条件下反应6h,取代度可达1.0959。用FTIR和13CNMR表征了高取代度阳离子淀粉的结构,X-ray衍射结果表明,阳离子化反应破坏了原淀粉的结晶结构,生成了具有非晶态结构的阳离子淀粉。
Resumo:
The spectrophotometric titration by sodium hydroxide of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin ((OH)(1)PH2) is studied as a function of solvent composition of DMF-H2O binary solvent mixture ([OH-] = 0.04 M). Combining the structure changes of the porphyrin and the "four orbital" model of Gouterman, many features of the optical spectra of this deprotonated para-hydroxy-substituted tetraphenylporphyrin in different composition of binary solvent mixtures can be rationalized. In highly aqueous solvents, the changes of the titration curves are shown to be mainly due to hydrogen-bonding of the oxygen of the phenoxide anion group by the hydroxylic solvent, Which decreases the energy of the phenoxide anion pi orbital. Thus the phenoxide anion pi orbital cannot cross over the porphyrin Tr orbital being a different HOMO. However, its energy is close to that of the porphyrin pi orbitals. As a result, in the visible region, no charge-transfer band is observed, while in the visible-near region, the Soret peak split into two components. In nonaqueous solvents, the changes are mainly attributed to further deprotonation of pyrrolic-Hs of (OH) 1PH2 by NaOH and coordination with two sodium ions to form the sodium complex of (OH) 1PH2, which turns hyperporphyrin spectra of deprotonated of phenolic-H of (OH)(1)PH2 into three-banded spectra of regular metalloporphyrin.
Resumo:
A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.
Resumo:
研究了Fe(acac)3/phen/O2在碱(K2CO3和NaOH)体系下对苯甲醇的选择氧化反应.循环伏安实验证实,Fe(acac)3通过碱调节其氧化还原电势可直接活化氧.
Resumo:
A phenolphthalein immobilized cellulose membrane for an optical pH sensor was described. The phenolphthalein was first reacted with the formaldehyde to produce a series of prepolymers with many hydroxymethyl groups. In this paper, the prepolymers was abbreviated to phenolphthalein-formaldehyde (PPF). Then the PPF was covalently immobilized to the diacetylcellulose membrane via hydroxymethyl groups. Finally the membrane was hydrolyzed in the 0.1 M NaOH solution for 24 h to reduce the response time. Advantageous features of the pH-sensitive membrane include (a) a large dynamic range from pH 8.0 to 12.50, or even broader, (b) rapid response time (2-30 s), (c) easy of fabrication, and (d) a promising material for determination of high pH values. The immobilized PPF has a broader dynamic range from 8.0 to 12.50 than the free phenolphthalein from pH 8.0 to 11.0, and this was due to the newly produced methylenes in our investigation.
Resumo:
Two kinds of polymeric pH indicators PPF (phenolphthalein-formaldehyde product) and CPF (o-cresolphthalein-formaldehyde product) immobilized cross-linked poly(vinyl alcohol) membranes (PPF-PVA and CPF-PVA) for optical intermittent determination of high basicity ([OH-] = 1-8 M) based on a kinetic process were developed. In our previous work, we had demonstrated that PPF-PVA and CPF-PVA could perform the determination of high pH values from pH 10.0 to 14.0. Here the discoloring kinetic behaviors of PPF-PVA and CPF-PVA were compared with those of free phenolphthalein, o-cresolphthalein and thymolphthalein. Experimental results and theoretical analysis indicated that the response behaviors of the optodes' membranes in concentrated NaOH solutions were diffusion-independent and still complied with the pseudo-first-order kinetics. In addition, two data analysis methods for determination were presented. One was directly based on the reduced absorbance: the other was based on the discoloring kinetic constant. It was found that the latter could perform a rapid (60 s) and reliable (relative standard deviation: 2.6%) determination for high basicity.
Resumo:
Sequential deprotonations of meso-(p-hydroxyphenyl)porphyrins (p-OHTPPH2) in DMF + H2O (V/V = 1:1) mixture have been verified to result in the appearance of hyperporphyrin spectra. However, when the deprotonations of these p-OHTPPH2 are carried out in DMF, the spectral changes differ considerably from those in the mixture mentioned above. At low [OH-], the optical spectra in the visible region are still considered to have characteristics of hyperporphyrin spectra. Further deprotonation at much higher basicity makes the optical spectra form three-banded spectra similar to those in the acidic solution. To clarify the molecular origins of these changes, UV-vis, resonance Raman (RR), proton nuclear magnetic resonance (H-1 NMR) experiments are carried out. Our data give evidence that p-OHTPPH2 in DMF can be further deprotonated of pyrrolic-H by higher concentrated NaOH, due to an aprotic medium like DMF effectively weakening the basicity of the porphyrin relative to that of the NaOH, and coordinates with two sodium ions (except the sodium ions that interact with the peripherial phenoxide anions) to form the sodium complexes of p-OHTPPH2 (Na2P, to lay a strong emphasis on the sodium ions that coordinate with the central nitrogen atom), which can be regarded as the porphyrin anions being perturbed by the sodium cations due to their highly ionic character.
Resumo:
The biogenic amines, putrescine, cadaverine, spermidine and spermine were separated and quantified by capillary electrophoresis with pulsed amperometric detection. Detection potential of the pulsed amperometric detection was optimized as 0.6 V Optimal separation of the biogenic amines was achieved using a separation buffer of 30 mM citrate at pH 3.5, while keeping the buffer in the detection cell as 20 mM NaOH. Using these conditions, the four biogenic amines were baseline separated. Extrapolated limits of detection for putrescine, cadaverime, spermidine and spermine were 400, 200, 100 and 400 nM for the standard mixture (polyamines dissolved in running buffer), respectively. These are lower than ultraviolet detection and comparable or even lower than laser-induced fluorescence detection results as reported in the literature. The number of theoretical plates was maintained at the 105 level, which is absolutely higher than any reported method. When applying capillary electrophoresis-pulsed amperometric detection to milk analysis, only spermidine was found in amounts varying between 0.1 and 0.5 mg/kg.
Resumo:
A method was developed for the determination of trace and ultratrace amounts of REE. Cd. In. Tl. Th. Nb, Ta. Zr and Hf in soils and sediments. With NaOH-Na2O2 as the flux. Ti(OH)(4)-Fe(OH)(3) co-precipitation as the preconcentration technique and inductively coupled plasma mass spectrometry (ICP-MS) for measurement, the whole procedure was concise and suitable for batch analysis of multi-element solutions. An investigation was carried out of the Ti(OH)(4)-Fe(OH)(3) co-precipitation system, and the results obtained showed that the natural situation of Ti tightly coexisting with Nb. Ta, Zr and Hf in geological samples plays a very important role in the complete co-precipitation of the four elements. The accuracy of this procedure was established using six Chinese soil and sediment certified reference materials (GSS and GSD). and the relative errors between the found and certified values were mostly below 10%.
Resumo:
The anodic voltammetric behavior of ethacridine (EAD) in the presence of various electrolytes was studied by using linear potential sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In the medium of 0.1 mol/L NaOH solution, an oxidative peak of ethaeridine was obtained. The peak potential is at about 0.40 V (vs. Ag/AgCl). The peak current is linearly increased with the concentration of ethaeridine over the range of 0.05 similar to 80 mg/L. The method has been used for the direct determination of ethacridine in injection. The relative standard deviation (n = 10) is 1.4% similar to 2.7%. The recoveries of ethacridine in urine samples are 89% similar to 95%. The mechanism of the electrode reaction was also discussed.
Resumo:
The voltammetric behaviour of acetophenetidin(A(1)) aminopyrine(A(2)) acetaminophenol(A(3)) and aminophenol(A(4)) was investigated by linear-sweep, differential-pulse, cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L NaOH solution, 4 high sensitivity and resolution anodic peaks were obtained. Their peak potentials are about at 0.68 V, 0.51, 0.22 and - 0.06 V( vs. Ag/AgCl). They can be used for direct determination of A(1), A(2),A(3),A(4) in samples respectively. The method is simple and rapid. The mechanism of the electrode reaction was discussed.