349 resultados para PBTE NANOCRYSTALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on three-dimensional precipitation of Au nanoparticles in gold ions-doped silicate glasses by a femtosecond laser irradiation and further annealing. Experimental results show that PbO addition plays the double roles of inhibiting hole-trapped centers generation and promoting formation and growth of gold nanoparticles. Additionally, glass containing PbO shows an increased non-linear absorption after femtosecond laser irradiation and annealing. The observed phenomena are significant for applications such as fabrications of three-dimensional multi-colored images inside transparent materials and three-dimensional optical memory, and integrated micro-optical switches. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near-infrared emission intensity of Ni2+ in Yb3+/Ni2+ codoped transparent MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics could be enhanced up to 4.4 times via energy transfer from Yb3+ to Ni2+ in nanocrystals. The best Yb2O3 concentration was about 1.00 mol%. For the Yb3+/Ni2+ codoped glass ceramic with 1.00 mol% Yb2O3, a broadband near-infrared emission centered at 1265 nm with full width at half maximum of about 300 nm and lifetime of about 220 mu s was observed. The energy transfer mechanism was also discussed. (C) 2008 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 mu s. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transparent Li2O-Ga2O3-SiO2 glass ceramics containing Cr3+/Ni2+ codoped LiGa5O8 nanocrystals were synthesized. The steady state emission spectra indicated that the near-infrared emission intensity of Ni2+ at 1300 nm in Cr3+/Ni2+ codoped glass ceramics was enhanced up to about 7.3 times compared with that in Ni2+ single-doped glass ceramics with 532 nm excitation. This enhancement in emission intensity was due to efficient energy transfer from Cr3+ to Ni2+, which was confirmed by time-resolved emission spectra. The energy transfer efficiency was estimated to be 85% and the energy transfer mechanism was discussed. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broadband neat-infrared emission from transparent Ni2+-doped sodium aluminosilicate glass-cermaics is observed. The broad emission is centered at 1290 nm and covers the whole telecommunication wavelength region (1100-1700 nm) with full width at half maximum of about 340 nm. The observed infrared emission could be attributed to the T-3(2)(F) -> (3)A(2)(F) transition of octahedral Ni2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 x 10(-24) cm(2)s. It is suggested that Ni2+-doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luminescence characteristics of Yb3+, La3+ codoped yttrium oxide nanopowders were investigated. The grain size and the crystallinity of (Yb0.05Y0.90La0.05)(2)O-3 nanopowders increase with the increase of calcination temperature. The average grain size of the nanopowders calcined at 1100 degrees C is 66 nm and its cooperative up-conversion luminescence centered at 498 nm was detected due to nanometer size effect and perfect crystallinity. However, the cooperative up-conversion luminescence of (Yb0.05Y0.90La0.05)(2)O-3 transparent ceramics was not detected. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the optical properties of single CdSe/ZnS nanocrystals by conducting combinations of experiments on antibunching and photoluminescence intermittence under different experimental conditions. Based on photoluminescence in an antibunching experiment, we analyzed the emission lifetime of QDs by using stretched exponentials. The difference between the parameters obtained from average lifetimes and stretched exponents were analyzed by considering the effect of nonradiative emission. An Auger-assisted tunneling model was used to explain the power law exponents of off time distribution. The power law exponent under high excitation power was correlated with a higher Auger ionization rate. Using the parameters obtained from stretched exponential function and power law, the antibunching phenomena at different time and under different excitation intensity were analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure and Lande electron g-factors of manganese-doped HgTe quantum spheres are investigated, in the framework of the eight-band effective-mass model and the mean-field approximation. It is found that the electronic structure evolves continuously from the zero-gap configuration to an open-gap configuration with decreasing radius. The size dependence of electron g-factors is calculated with different Mn-doped effective concentration, magnetic field, and temperature values, respectively. It is found that the variations of electron g-factors are quite different for small and large quantum spheres, due to the strong exchange-induced interaction and spin-orbit coupling in the narrow-gap DMS nanocrystals. The electron g-factors are zero at a critical point of spherical radius R-c; however, by modulating the nanocrystal size their absolute values can be turned to be even 400 times larger than those in undoped cases. Copyright (c) EPLA, 2008.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doping difficulty in semiconductor nanocrystals has been observed and its origin is currently under debate. It is not clear whether this phenomenon is energetic or depends on the growth kinetics. Using first-principles method, we show that the transition energies and defect formation energies of the donor and acceptor defects always increase as the quantum dot sizes decrease. However, for isovalent impurities, the changes of the defect formation energies are rather small. The origin of the calculated trends is explained using simple band-energy-level models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Si-based photonic materials and devices, including SiGe/Si quantum structures, SOI and InGaAs bonded on Si, PL of Si nanocrystals, SOI photonic crystal filter, Si based RCE (Resonant Cavity Enhanced) photodiodes, SOI TO (thermai-optical) switch matrix were investigated in Institute of Serniconductors, Chinese Academy of Sciences. The main results in recent years are presented in the paper. The mechanism of PL from Si NCs embedded in SiO2 matrix was studied, a greater contribution of the interface state recombination (PL peak in 850 similar to 900 nm) is associated with larger Si NCs and higher interface state density. Ge dots with density of order of 10(11) cm(-2) were obtained by UHV/CVD growth and 193 nm excimer laser annealing. SOI photonic crystal filter with resonant wavelength of 1598 nm and Q factor of 1140 was designed and made. Si based hybrid InGaAs RCE PD with eta of 34.4% and FWHM of 27 nut were achieved by MOCVD growth and bonding technology between InGaAs epitaxial and Si wafers. A 16x16 SOI optical switch matrix were designed and made. A new current driving circuit was used to improve the response speed of a 4x4 SOI rearrangeable nonblocking TO switch matrix, rising and failing time is 970 and 750 ns, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano-crystalline Si/SiO2 multilayers were prepared by alternately changing the ultra-thin amorphous Si film deposition and the in situ plasma oxidation process followed by the post-annealing treatments. Well-defined periodic structures can be achieved with 2.5 nm thick SiO2 sublayers. It is shown that the size of formed nano-crystalline Si is about 3 nm. Room temperature electroluminescence can be observed and the spectrum contains two luminescence bands located at 650 nm and 520 nm. In order to improve the hole injection probability, p-i-n structures containing a nanocrystalline Si/SiO2 luminescent layer were designed and fabricated on different p-type substrates. It is found that the turn-on voltage of p-i-n structures is obviously reduced and the luminescence intensity increases by 50 times. It is demonstrated that the use of a heavy-doped p-type substrate can increase the luminescence intensity more efficiently compared with the light-doped p-type substrate due to the enhanced hole injection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical heterostructures of zinc antimonate nanoislands on ZnO nanobelts were prepared by simple annealing of the polymeric precursor. Sb can promote the growth of ZnO nanobelts along the [552] direction because of the segregation of Sb dopants on the +(001) and (110) surfaces of ZnO nanobelts. Furthermore, the ordered nanoislands of toothlike ZnSb2O6 along the [001](ZnO) direction and rodlike Zn7Sb2O12 along the [110](ZnO) direction can be formed because of the match relation of the lattice and polar charges between ZnO and zinc antimonate. The incorporation of Sb in a ZnO lattice induces composition fluctuation, and the growth of zinc antimonate nanoislands on nanobelt sides induces interface fluctuation, resulting in dominance of the bound exciton transition in the room temperature near-band-edge (NBE) emission at relatively low excitation intensity. At high excitation intensity, however, Auger recombination makes photogenerated electrons release phonon and relax from the conduction band to the trap states, causing the NBE emission to gradually saturate and redshift with increasing excitation intensity. The green emission more reasonably originates from the recombination of electrons in shallow traps with doubly charged V-O** oxygen vacancies. Because a V-O** center can trap a photoactivated electron and change to a singly charged oxygen vacancy V-O* state, its emission intensity exhibits a maximum with increasing excitation intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stoichiometric Gd2O3-x thin film has been grown on a silicon (10 0) substrate with a low-energy dual ion-beam epitaxial technique. Gd2O3-x shares Gd2O3 structures although there are many oxygen deficiencies in the film. The photoluminescence (PL) measurements have been performed in a temperature range 5-300 K. The detailed characters of the peak position, the full-width at half-maximum (FWHM) and the peak intensity at different temperature were reported. An anomalous intensity behavior of the PL spectra has been observed, which is similar to that of some other materials such as porous silicon and silicon nanocrystals in silicon dioxide. Therefore, we suggest that the nanoclusters with the oxygen deficiencies contribute to the PL emission and employ the model of singlet-triplet exchange splitting of exciton to discuss the four peaks observed in the experiment. (C) 2003 Elsevier B.V. All rights reserved.