185 resultados para PAHs-degrading microorganisms


Relevância:

10.00% 10.00%

Publicador:

Resumo:

多环芳烃(PAHs)作为一种普遍的环境污染物已开始在一些地区的土壤中高度富集,特别是在与石油、天然气和木材防腐有关的工厂所在地尤为如此。它们作为优先环境污染物而引起人们的关注是因为其中的许多种类已被证明是致癌物、致畸物和诱变剂。多环芳烃在土壤中具有相对稳定性,因此它比一般有机污染物更难降解。生物泥浆反应器已被国外证明是最有效的有机污染土壤清洁方法。本项研究利用自设计的国内第一个生物泥浆反应器对污染土壤中的多环芳烃在生物泥浆反应器中的降解条件进行研究,并优化其运行工艺参数。本研究采用三环的菲和四环的芘作为多环芳烃供试化学品。处理装置为小型的生物泥浆反应器(15L/个)。反应器配备搅拌、通气和温度控制装置,在好氧条件下进行。本项研究设计了七组不同的处理条件:不同的起始浓度(PAHs)、不同的温度(10℃,20℃,30℃)、不同的微生物接种量(5%,10%,15%,20%[W/W])、不同的表面活性剂浓度(Tween-80),研究了生物泥浆反应器在不同处理条件下对多环芳烃污染土壤的净化效果。研究结果表明,温度变化、表面活性剂浓度、接种量均对菲和芘的生物降解有明显影响。菲(3环)在生物泥浆反应器中其浓度很快降低,在360小时内去除率达97%。芘(4环)在实验浓度下下降相对较慢,360小时最高去除率也可达87%以上,平均去除率为50%以上,去除效果明显。在本研究中,多环芳烃在反应器中生物降解的最佳条件是20℃-30℃、水土比为2/1、接种量为5%、添加Tween-80的浓度为10mg/kg。本项研究首次将多环芳烃的生物泥浆反应器降解过程分为两个阶段,第一阶段是多环芳烃的快速降解阶段;第二阶段是降解停滞阶段。指出共代谢底物应在第二阶段投加为宜;研究了影响菲与芘生物半减期的因素;指出了初始浓度对菲与芘生物降解效果的不同影响;对泥浆反应器处理PAHs的运行条件进行了较为全面的研究,为这一技术的广泛应用奠定了基础。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

运用土壤学、微生物学、生态学和统计学方法,系统地开展了石油污染土壤的植物-微生物联合修复研究,对植物-微生物修复的生态影响进行了分析,并从根际微生物区系变化与根分泌物特性两个角度深入探讨了污染土壤植物一微生物联合修复的机理。室内模拟、室外盆栽、田间微区实验的结果表明:(1)植物-微生物联合修复对不同浓度石油烃污染土壤有较好的修复效果,125d的修复周期中对土壤中石油污染物的降解率为7.1%-69.8%,随污染物浓度的升高,联合修复对土壤中污染物的降解作川增强;(2)植物一微生物联合修复作用可能会长期持续,并对难降解物质PAHs存在修复潜力;(3)在本实验条件下,采用经济作物与降解微生物联合修复会降低土壤有机质含量,对土壤生态系统的结构和功能不会产生严重的干扰,对土壤生态环境的影响可以在短时间恢复;(4)植物一微生物联合作用方式在于植物与微生物的相互作用,作用区为植物根际,微生物在植物根际区域的种类数量和生化特征存在差异;植物分泌物对于微生物具有调节作用,促使污染物的生物降解。并以本试验研究为例,进一步探讨石油污染土壤植物一微生物联合修复的机理,利石油污染土壤的植物一微生物联合修复的影响因子进行调控研究,联合修复的主要影响因子是营养因子,其次是污染物浓度。石油污染土壤的植物一微生物联合修复研究,对土壤微生物群落,植物根际效应及潜在自然生物降解获得了进一步的理解,为污染土壤修复技术提供了科学依据和理论支持。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤微生物(Soil microbes)是生态系统的重要组成部分,它参与土壤中复杂有机物质的分解和再合成,也参与C、N、S、P等的循环。土壤酶(Soil enzyme)是土壤中具有生物活性的蛋白质,它与微生物一起推动着土壤的生物化学过程,并在树木营养物质的转化中起着重要的作用。鉴于土壤微生物和土壤酶对环境变化的敏感性,它们在CO2浓度和温度升高时的反应将在很大程度上影响森林生态系统的结构和功能。因此,要全面评价大气CO2浓度和温度升高对整个生态系统的影响,有必要对CO2浓度和温度升高条件下的土壤微生物的反应进行深入的研究与探讨。本文应用自控、封闭、独立的生长室系统,研究了川西亚高山岷江冷杉(Abies faxoniana)根际、非根际土壤微生物数量,红桦(Betula albosinensis)根际微生物数量以及根际、非根际土壤酶活性对大气CO2浓度(环境CO2浓度+350±25μmol·mol-1,EC)和温度(环境温度+2.0±0.5℃,ET)升高及两者同时升高(ECT)的响应。结果表明: 1) EC和ET显著增加岷江冷杉根际微生物数量,但不同微生物种类对EC和ET的反应有所差异。6、8和10月,岷江冷杉根际微生物数量与对照(CK)相比,EC处理的根际细菌数量分别增加了35%、164%和312%,ET处理增加了30%、115%和209%;EC和ET处理对根际放线菌和根际真菌数量影响不显著。ECT处理的根际放线菌数量分别增加了49%、50%和96%,根际真菌数量增加了151%、57%和48%;而ECT对根际细菌数量影响不显著。EC、ET和ECT处理对岷江冷杉土壤微生物总数的根际效应明显,其R/S值分别为1.93、1.37和1.46(CK的R/S值为0.81)。 2) 红桦根际微生物数量对EC、ET和ECT的响应不同。生长季节(5~10月),高密度的红桦根际细菌数量与CK 相比,EC的根际细菌数量分别增加28%、33%、423%、65%、43%和79%,而低密度的红桦根际细菌数量增加不显著。ET能显著增加根际细菌数量(7~10月),其中高密度的根际细菌数量分别增加了377%、107%、35%、22%,而低密度的根际细菌数量分别增加了27%、27%、64%、48%;ECT对两个密度水平下根际细菌数量均未产生有显著的影响。高、低密度的红桦根际放线菌和根际真菌数量与 CK 相比,EC显著增加了低密度的红桦根际放线菌数量,而对高密度的根际放线菌数量无显著影响;ET和ECT对高低密度的红桦根际放线菌数量均未产生显著影响。EC和ET对高低密度的根际真菌数量也无显著影响,而ECT却显著增加了高低密度的根际真菌数量。 3) EC、ET和ECT处理的低密度红桦根际微生物(细菌、放线菌和真菌)数量没有显著高于或低于高密度根际微生物数量,表明短期内密度对红桦根际微生物数量不产生影响。 4) 不同种类的氧化还原酶对EC、ET和ECT的响应不同。5~10月,EC的红桦根际过氧化氢酶活性是CK 的1.44、1.06、1.11、1.10、1.12和1.24倍,差异显著(6月除外);ET和ECT处理根际过氧化氢酶活性无显著增加。EC的红桦根际多酚氧化酶活性比CK显著增加;ET的根际多酚氧化酶活性显著高于CK(8月除外)。ECT的根际多酚氧化酶活性高于CK,差异不显著。EC的根际脱氢酶活性分别增加了46%、40%、133%、48%、17%和26%,差异显著。5~7月,ET和ECT的根际脱氢酶活性高于CK的脱氢酶活性,而8~9月则相反,差异性均不显著。 5) EC、ET和ECT对不同种类的水解酶的影响不同。EC能显著增加红桦根际脲酶活性,5~10月分别增加了29%、42%,、70%、67%、59%和57%。ET和ECT 对根际脲酶活性未产生显著影响。EC显著提高根际转化酶活性,5、6和9月EC的根际转化酶活性分别比CK高51%、42%和40%。5和10月,ET的根际转化酶活性低于CK,而其余月份却高于CK,但均具有显著性差异。ECT的根际转化酶活性与CK的根际转化酶活性有显著性差异(9月除外),5、6和7月的根际转化酶活性分别提高了94%、198%和67%。 6) 与CK相比,EC、ET和ECT的非根际土壤微生物数量以及非根际土壤酶活性均无显著提高。EC、ET和ECT的过氧化氢酶、脲酶的根际效应明显,而多酚氧化酶和脱氢酶根际效应不明显。EC和ECT的转化酶根际效应明显,而ET的转化酶根际效应不明显。 It is well known that atmospheric CO2 concentration and temperature are increasing as a consequence of human activities. In past decades, considerable efforts had been put into investigating the effects of climate change on processes of forest ecological system. In general, studies had been mainly focused on the effects of elevated atmospheric CO2 on plant physiology and development, litter quality, and soil microorganisms. Studies showed that there was variation in the responses of root development and below-ground processes to climate between different plant communities. Since the concentration of CO2 in soil was much higher (10~50 times) than in the atmosphere, increasing levels of atmospheric CO2 may not directly in fluence below ground processes. Betula albosinensis and Abies faxoniana, as the dominated tree species of subalpine dark coniferous forest in the western Sichuan province, which play an important role in the structure and function of this kind of forest ecosystem. In our study, effects of elevated atmospheric CO2 concentration (350±25μmol·mol-1), increased temperature (2.0±0.5℃) and both of the two on the number of rhizospheric microbe and rhizospheric enzyme activity were studied by the independent and enclosed-top chamber’ system under high-frigid conditions. Responses of rhizospheric bacteria, actinomycetes and fungi number of Betula albosinensis and Abies faxoniana under different densities(high density with 84 stems·m-2, low density with 28 stems·m-2 ), and rhizospheric enzyme activity of Betula albo-sinensis to elevated CO2 concentration and increased temperature were analyzed and discussed. The results are as the following, 1) In comparion with the control, the numbers of rhizospheric bacteria of Abies faxoniana were increased by 35%, 164% and 312% significantly in June, August and October respectively of EC, and were increased by 30%, 115% and 209% respectively of ET.However the effect of EC and ET on rhizospheric actinomycetes and fungi was not significant. The number of rhizospheric actinomycetes of ECT were increased significantly by 49%, 50% and 96% respectively, and the increment of rhizospheric fungi were 151%, 57% and 48% respectively .The effect of ECT on rhizospheric bacteria was not significant. Rhizospheric effect of soil microbe for all treatments was significant, with the R/S of 1.93, 1.27 and 1.46 for EC, ET and ECT, respectively. 2) Treatment EC improved the number of rhizospheric bacteria of Betula albosinensis under high density significantly in comparison with the control, over the growing season, the greatest increment of rhizospheric bacteria was from July. However, EC had no effect on the number of rhizospheric bacteria under low density. Except May and June, treatment ET improved the number of rhizospheric signifcantly. The effect of treatment ECT on the number of rhizospheric bacteria under different densities was not significant. Of treatment EC, the number of rhizospheric actinomycetes of Betula albosinensis under low density were increased significantly, however, treatment EC did not stimulate the number of rhizospheric actinomycetes under high density. Simultaneously, treatment ET and ECT did not stimulate the number of rhizospheric actinomycetes. Finally, in treatment ECT, the number of rhizospheric fungi under high density were increased significantly, however treatment EC and ET did not stimulate the number of rhizospheric fungi under different densities. 3) Of treatment EC, ET and ECT, the number of rhizospheric microbe of Betula albosinensis under low density were not more or fewer than that of microbe under hign density along the growing season, which showed that plant density had no effect on the nmber of microbe. 4) From May to October, 2004,rhizospheric catalase activity of Betula albosinensis of treatment EC was 1.44, 1.06, 1.11, 1.10, 1.12 and 1.24 times as treatment CK respectively, and the difference was statistically significant(except June). Treatment ET and ECT did not increase rhizospheric catalase activity significantly. In treatment EC, the rhizospheric pohyphenol oxidase activity was higher than treatment CK significantly. The rhizospheric pohyphenol oxidase activity of treatment ET was higher than CK significantly (except August). The rhizospheric pohyphenol oxidase activity of treatment ECT was higher than CK, but the difference was not statistically significant. Over the growing period, the rhizospheric dehydrogenase activity were increased 46%, 40%, 133%, 48%, 17% and 26% respectively by treatment EC, and the difference was statistically significant. From May to July, the rhizospheric dehydrogenase activity in treatment ET and ECT was higher than CK, but from August to October, the rhizospheric dehydrogenase activity was lower than CK, the difference was not significant. 5) Treatment EC increased rhizospheric urease activity significantly, from May to October, rhizospheric urease activity were increased 29%, 42%, 70%, 67%, 59% and 57% respectively by EC. Treatment ET and ECT had no effect on rhizospheric urease activity. Treatment EC improved rhizospheric invertase activity significantly, in May, June and September, the rhizospheric invertase activity of treatment EC were increased 51%, 42% and 40% in comparison with the control. Except May and October, the rhizospheric invertase activity of treatment ET was markly higher than CK. The rhizospheric invertase activity of treatment ECT was significantly different from CK (except September), in May, June and July treatment ECT increased rhizospheric invertase activity by 94%, 198% and 67% respectively. 6) In comparison with the control, treatment EC, ET, and ECT had no effect on the number of non-rhizospheric microbe and non-rhizospheric enzyme activity. Rhizospheric effect of catalase and urease for all treatments was significant, but rhizospheric effect of pohyphenol oxidase and dehydrogenase was not significant. Rhizospheric effect of invertase of EC and ECT was significant, but rhizospheric effect of invertase of ET was not significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物生长和生产力受到自然界各种形式的生物和非生物胁迫因子的影响。这些胁迫包括低温、高温、盐碱、干旱、洪水、重金属、虫害、病害和紫外线辐射等等。而人类活动大大加剧了这些胁迫所带来的影响。由于人类污染而导致臭氧层衰减以及由此产生的地球表面紫外辐射增强已经成为全球气候变化的一个主要方面。UV-B胁迫,甚至当前的辐射水平,所带来的影响已经引起科学工作者的广泛关注。 为了生存和繁殖,植物不得不面临环境中各种潜在胁迫所带来的负面影响。然而,植物生活型的不可移动性决定了其逃避胁迫的局限性。因此,绝大多数植物都是通过对胁迫作出反应,通过修复或者更新组织来降低伤害。而植物应对环境变化的能力则是由其生长模式的种属特异性和本身的遗传组成所决定。在自然界,植物常常同时面临多种胁迫,这些胁迫所引发的植物反应可能具有叠加、协同或者拮抗作用。沙棘是一种具刺、具有固氮功能的多年生雌雄异株灌木,广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文采用沙棘作为模式植物,试图探索木本植物对低温,UV-B辐射增强以及其与干旱的复合胁迫的响应以及沙棘对这些胁迫响应是否具有种群差异性。 对来自南北两个种群的沙棘进行短日照和低温处理,检测了其在抗寒锻炼和抗寒性发育过程中存在的性别差异。结果表明,短日照和低温都分别能够诱导抗寒锻炼的发生,而两者同时存在对所有实验植株抗寒性的大小具有叠加效应。然而,短日照和低温所诱导的抗寒性在两个种群中都具有性别差异性,雄性植株比雌雄植株对短日照和低温更为敏感。同时,南北种群间也存在差异性,北方种群的植物比南方种群的植物对短日照和低温敏感,从而在短日照下抗寒锻炼的发生时间更早,低温诱导的抗寒性更大。短日照和低温诱导植物增加抗寒性的同时伴随着脱落酸的变化。脱落酸的变化因处理,种群和性别的不同而不同。这些生理反应表明不同的沙棘种群,不同的植株性别对同一环境胁迫可能存在不同的生存策略。 比较了来自高低两个海拔的沙棘种群对于干旱和UV-B辐射增强以及两者复合胁迫条件下的生理生态反应。干旱使两个种群中植株总的生物量,总叶面积,比叶面积,叶片含碳量,含磷量,木质素含量和碳氮比显著降低,使根冠比,粗根细根比和叶片脱落酸含量显著增加。干旱而非UV-B使得δ13C 值显著增加。但是,比较而言,来自高海拔的种群对干旱反应更为强烈,而来自低海拔的种群对UV-B更敏感。在UV-B辐射增强的处理下,干旱所诱导的脱落酸的积累被显著抑制。而且我们检测到在一些指标上存在显著的干旱×UV-B交互作用,如两个种群中在总生物量上,低海拔种群中在总叶面积,粗根细根比上,高海拔种群中在比叶面积,δ13C值,木质素含量上都存在明显的交互作用。这些结果表明这两个种群对胁迫具有不同的适应性反应,来自高海拔的种群比来自低海拔的种群更能够抵御干旱和UV-B胁迫。 室外实验表明,UV-B 去除/增补对沙棘高低两个海拔种群的影响都不大。对生物量的积累,植株高度以及一些常见的胁迫反应生理指标比如丙二醛、ABA 和游离脯氨酸都没有显著影响。UV-B 的效应比UV-A 大,植物反应在无UV 和仅有UV-A 的处理间没有什么区别。然而,UV-B 去除的两个处理和UV-B 存在的两个处理间存在显著区别。UV-B 使得两个种群都显著降低了比叶面积(SLA),但却使长期用水效率增加。但UV-B对光合色素和光合系统II 的影响不大。总体看来,来自低海拔的种群对UV-B 更为敏感。 Plant is adversely affected by various abiotic and biotic stress factors. These stressors includelow temperature, heat, salt, drought, flooding, heavy metal toxicity, wounding by herbivores,infecting by pathogenic microorganisms, ultraviolet (UV) radiation and so on. Variousanthropogenic activities have accentuated the existing stress factors. One of the mostimportant aspects of global change is that of stratospheric ozone depletion caused by seriousanthropogenic pollution and the resulting increase in UV radiation reaching the surface of theEarth. Scientists have become concerned about the effects that considerable UV-B stress, evenat current levels. In order to survive and reproduce, plants have to be able to cope with lots of potentiallyharmful stress factors that are almost constantly present in their environment. Most plants’responses under stress are to neutralize the stress, repairing the damage or regrowing newtissue rather than to avoid it due to their sessile life style. The plant defense capacity dependson plant-specific modular growth patterns and genetic make-up that allows for flexibleresponses to changing environments. Plants usually encounter several stresses simultaneouslyunder field conditions, and the stresses may cause a variety of plant responses, which can beadditive, synergistic or antagonistic. Sea buckthorn (Hippophae rhamnoides L.), a thorny nitrogen fixing deciduously perennialshrub, which is widely distributed throughout the temperate zones of Asia and Europe and thesubtropical zones of Asia at high altitudes. It has been widely used in forest restoration as thepioneer species in China. In this paper, we used sea buckthorn as a model, tried to get some understand of how plants fight low temperature, enhanced UV-B radiation level and thatcombination of drought. And also, want to know whether does there exist some populationspecific responses to such stressors. Sexual differences in cold acclimation and freezing tolerance development of two contrastingsea buckthorn (Hippophae rhamnoides L.) ecotypes from northern and southern regions inChina were recorded after exposure to short day photoperiod (SD) and low temperature (LT).The results demonstrated that cold acclimation could be triggered by exposing the plants toSD or LT alone, and that a combination of both treatments had an additive effect on freezingtolerance in all plants tested. However, development of freezing tolerance was dependent onthe sex of plants under SD and LT, the males were clearly more responsive to SD and LT thanthe females in both ecotypes studied. On the other hand, development of freezing tolerancewas also ecotype-dependent, the northern ecotype was more responsive to SD and LT than thesouthern ecotype, resulting in earlier cold acclimation under SD and higher freezing toleranceunder LT. Moreover, development of freezing tolerance induced by SD and LT wasaccompanied by changes in ABA levels. These alterations in ABA levels were different indifferent treatments, ecotypes and sexes. Therefore, the differences in SD and LT-inducedphysiological responses showed that the different ecotypes and the different sexes mightemploy different survival strategies under environmental stress. Two contrasting populations from the low and high altitudinal regions were employed toinvestigate the effects of drought, UV-B and their combination on sea buckthorn. Droughtsignificantly decreased total biomass, total leaf area, specific leaf area,leaf carbon (C),phophous (P), lignin content and the ratio of C: N in both populations, and increasedroot/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA), in bothpopulations. Drought but not UV-B resulted in significantly greater carbon isotopecomposition (δ13C) values in both populations. However, the high altitudinal population wasmore responsive to drought than the low altitudinal population. The drought-inducedenhancement of ABA in the high altitudinal population was significantly suppressed in thecombination of drought and elevated UV-B. Moreover, significant drought × UV-B interactionwas detected on total biomass in both populations, total leaf area and fine root/coarse root inthe low altitudinal population, specific leaf area, δ13C value and leaf lignin content in the high altitudinal population. These results demonstrated that there were different adaptive responsesbetween two contrasting populations, the high altitudinal population exhibited highertolerance to drought and UV-B than the low altitudinal population. A field experiment was conducted to investigate effects of UV-B exclusion/supplementationon two altitudinal populations of sea buckthorn. UV-B exclusion or supplementation had littleeffects on both populations investigated. For instance, the total biomass, plant height andsome physiological index such as Malondialdehyde (MDA), ABA and free proline were notchanged significantly. The UV-B effects are more significant than that of UV-A, nodifferences were found between treatments of excluded UV and excluded UV-B. However,compared with treatments of UV-B exclusion (including absent of UV-B and all UV band),the present of UV-B (including near ambient environment and enhanced UV-B) significantdecreased specific leaf area, and increased long time water use efficiency as evaluated by δ13Cvalue. UV-B had little effects on photosynthetic pigments and Photosystem II (PSII). The lowaltitude population is more sensitive to UV-B than that of the high altitude population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

穗发芽(PHS,preharvest sprouting)是影响禾本科作物生产的重要的灾害之一。收获时期如遇潮湿天气容易导致穗发芽发生。发生穗发芽的种子内部水解酶(主要是α-淀粉酶)活性急剧升高,胚乳贮藏物质开始降解,造成作物产量和品质严重降低。因此,选育低穗发芽风险的品种是当前作物育种工作中面临的重要任务。 青稞(Hordeum vulgare ssp. vulgare)主要分布于青藏高原,自古以来就是青藏高原人民的主要粮食。近年来,由于青稞丰富的营养成分和特有的保健品质、在燃料工业中的潜力以及在啤酒酿造工业中的利用前景,在发达国家日趋受到重视,掀起综合研究利用的热潮。我国拥有占全世界2/3 以上的青稞资源,具有发展青稞产业的得天独厚的条件。然而,由于青稞收获期间恰逢青藏高原雨季来临,常有穗发芽灾害发生,使青稞生产损失巨大。目前对青稞穗发芽研究很少,适用于育种的穗发芽抗性材料相对缺乏,不能很好的满足青稞穗发芽抗性育种的需要。本研究以青藏高原青稞为材料,对其穗发芽抗性的评价指标和体系进行构建,同时筛选青稞抗穗发芽品种并对其抗性进行评价,还利用分子生物学手段对青稞穗发芽抗性的分子机理进行了初步探讨。主要研究结果如下: 1. 本试验以来自于我国青藏高原地区的青稞为材料,对休眠性测定的温度范围进行探讨,并对各种穗发芽抗性测定方法的对青稞的适用性进行评测。通过探讨温度对13 个不同基因型的青稞籽粒发芽和休眠性表达的影响,对筛选青稞抗穗发芽资源的温度条件进行探索,并初步分析了其休眠性表达的机理。在10,15,20,25,30℃的黑暗条件下,选用新收获的13 个青稞品种为材料进行籽粒发芽实验,以发芽指数(GI)评价其休眠性。结果发现,不同品种对温度敏感性不同,其中温度不敏感品种,在各温度条件下均表现很低的休眠性;而温度敏感品种,其休眠性表达受低温抑制,受高温诱导。15℃至25℃是进行青稞休眠性鉴定的较适宜的温度范围。通过对供试材料发芽后的α-淀粉酶活性,发现温度对青稞种子的休眠性表达的影响至少在一定程度上表现在对α-淀粉酶活性的调控上。随后,对分别在马尔康和成都进行种植的34 份青稞穗发芽指数(SI),穗发芽率(SR),籽粒发芽指数(GI)和α-淀粉酶活性(AA)进行了测定和分析,发现它们均受基因型×栽培地点的极显著影响,且四个参数之间具有一定相关性。GI 参数由于其变异系数较低,在不同栽培地点稳定性好,且操作简便,是较可靠和理想的穗发芽评价参数。SI 参数可作为辅助,区别籽粒休眠性相似的材料(基因型)或全面评价材料(基因型)的穗发芽抗性特征。AA 参数稳定性较差,并且检测方法复杂,因此不建议在育种及大量材料筛选和评价时使用。此外,青稞穗发芽抗性受环境影响较大,评价时应考虑到尽可能多的抗性影响因素及其在不同栽培条件下的变异。 2. 对来自青藏高原的青稞穗发芽抗性特征及其与其它农艺性状间的关系进行研究。通过测定穗发芽指数(SI)、籽粒发芽指数(GI)和α-淀粉酶活性(AA),表明113 份青稞材料的穗发芽抗性具有显著差异。SI、GI 和AA 参数的变幅分别为1.00~8.86、0.01~0.97 和0.00~2.76,其均值分别为4.72、0.63 和1.22。根据SI 参数,六个基因型,包括‘XQ9-5’,‘XQ33-9’,‘XQ37-5’,‘XQ42-9’,‘XQ45-7’和‘JCL’被鉴定为抗性品种。综合SI、GI 和AA 参数,可以发现青稞的穗发芽抗性机制包含颖壳等穗部结构的抗性和种子自身的抗性(即种子休眠性),且供试材料中未发现较强的胚休眠品种,除‘XQ45-7’外,所有品种在发芽第四天均能检测出α-淀粉酶活性。穗部结构和种子休眠的抗性机制因基因型不同而不同,在穗发芽抗性中可单独作用或共同作用。农家品种和西藏群体分别比栽培品种和四川群体的穗发芽抗性强,而在不同籽粒颜色的青稞中未发现明显差异。相关性检验发现,青稞的穗发芽抗性,主要是种子休眠性,与百粒重、开花期、成熟期、穗长、芒长和剑叶长呈显著负相关关系,与株高相关性不显著。农艺性状可以作为穗发芽抗性材料选育中的辅助指标。本试验为青稞穗发芽抗性育种研究提供了必要的理论基础和可供使用的亲本材料。 3. α-淀粉酶是由多基因家族编码的蛋白质,在植物种子萌发时高度表达,与植物种子的萌发能力密切相关。在大麦种子发芽时,高等电点α-淀粉酶的活性远大于低等电点的α-淀粉酶。为了研究不同穗发芽抗性青稞品种中编码高等电点α-淀粉酶Amy1 基因结构与抗性间的关系,我们以筛选得到的抗性品种‘XQ32-5’(TR1)、‘XQ37-5’(TR2)、‘XQ45-7’(TR3),易感品种‘97-15’(TS1)、‘9657’(TS2)以及强休眠大麦品种‘SAMSON’(SAM)为材料,对其Amy1 基因的编码区序列进行克隆和结构分析,并对它们推导的氨基酸序列进行比较。结果显示,青稞Amy1 基因具有三个外显子、两个内含子,编码区中有13 个核苷酸变异位点,均位于2、3 号外显子,2 个变异位点位于2 号外显子。SAM 和TS1 分别在2 号外显子相应位置有5 个相同的碱基(GAACT)的插入片段。相应α-淀粉酶氨基酸序列推导发现,所有核苷酸变异中有8 个导致相应氨基酸残基的改变,其余位点为同义突变。青稞Amy1 基因编码区序列品种间相似度高达99%以上,部分序列变异可能与其穗发芽抗性有关。随后,我们又通过SYBR Green 荧光定量技术对该基因在不同发芽时间(1d~7d)的相对表达水平进行了差异性检测。结果发现,7 天内不能检测到SAM 的Amy1 基因表达,5 个青稞品种间的Amy1 基因的相对表达量均随着发芽时间延长而上升,但上升方式有所不同。弱抗品种该基因表达更早,转录本增加速率更大,且在4~5 天可达到平台期。发芽7 天中,抗性品种总转录水平明显低于易感品种。本研究结果表明,青稞Amy1 基因的转录水平是与其穗发芽抗性高度相关。 我国青藏高原青稞,尤其是农家品种的穗发芽抗性具有丰富的变异,蕴藏着穗发芽抗性育种的宝贵资源。本研究为青稞穗发芽抗性育种建立了合理抗性评价体系,筛选出可供育种使用的特殊材料,阐明了农艺性状可辅助穗发芽抗性育种,同时还对穗发芽抗性与α-淀粉酶基因的结构和表达关系进行分析,为青稞穗发芽抗性资源筛选奠定了基础。 Preharvest sprouting (PHS) is a serious problem in crop production. It often takes place when encountering damp, cold conditions at harvest time and results in the decrease of grain quality and great loss of yield by triggering the synthesis of endosperm degrading enzymes (mostly the α-amylase). Therefore, PHS is regarded as an important criterion for crop breeding. In order to minimize the risk of PHS, resistant genotypes are highly required. Hulless barley (Hordeum vulgare ssp. vulgare) is the staple food crop in Qinghai-Tibetan Plateau from of old, where is one of the origin and genetic diversity centers of hulless barley. Recently, interest in hulless barley has been sparked throughout the world due to the demonstrations of its great potential in health food industry and fuel alcohol production. Indeed, hulless barley can also be utilized to produce good quality malt if the appropriate malting conditions are used. In China, overcast and rainy conditions often occur at maturity of hulless barley and cause an adverse on its production and application. PHS resistant genotypes, therefore, are highly required for the hulless barley breeding programs. However, few investigations have been made so far on this issue. The objectives of this study were: 1) to assessment of methods used in testing preharvest sprouting resistance in hulless barley; 2) to evaluate the variability and characteristics of PHS resistance of hulless barley from Qinghai-Tibet Plateau in China; 3) to select potential parents for PHS resistance breeding; 4) to primarily study on the molecular mechanism of PHS resistance of hulless barley. Our results are as followed: 1. We investigated the temperature effects on seed germination and seed dormancy expression of hulless barley, discussed appropriate temperature range for screening of PHS resistant varieties, and analyzed the mechanism of seed dormancy expression of hulless barley. The dormancy level of 13 hulless barley were evaluated by GI (germination index) values calculating by seed germination tests at temperature of 10,15,20,25,30℃ in darkness. There were great differences in temperature sensitivity among these accessions. The insensitive accessions showed low dormancy at any temperature while the dormancy expression of sensitive accessions could be restrained by low temperature and induced by high temperature. The temperature range of 15℃ to 25℃ was workable for estimating of dormancy level of hulless barley according to our data. Analysis of α-amylase activity showed that the temperature effects on seed germination and the expression of seed dormancy be achieved probable via regulating of α-amylase activity. Furthermore, we evaluated the differences in sprouting index (SI), sprouting rate (SR), germination index (GI) and α-amylase activity (AA) between Maerkang and Chengdu among 34 accessions of hulless barley from Qinghai-Tibetan Plateau in China. These PHS sprouting parameters were significantly affected by accession×location, and they had correlation between each other. GI was the most reliable parameter because of its low CV value, good repeatability and simple operation. SI could assist in differentiating between accessions of similar dormancy or overall evaluation of the resistance. AA was bad in repeatability and had relatively complex testing method, therefore, not appropriate for breeding and evaluation and screening of PHS resistant materials. Besides, since PHS resistance of hulless barley was greatly influenced by its growth environment, possibly much influencing factors and variations between cultivated conditions should be considered. 2. In this study, large variation was found among 113 genotypes of hulless barley (Hordeum vulgare ssp.vulgare) from Qinghai-Tibetan Plateau in China, based on the sprouting index (SI), germination index (GI) and α-amylase activity (AA) which derived from sprouting test of intact spikes, germination test of threshed seeds and determination of α-amylase activity, respectively. The range of SI, GI and AA was 1.00~8.86, 0.01~0.97 and 0.00~2.76,the mean was 4.72, 0.63 and 1.22 espectively. Six resistant genotypes, including ‘XQ9-5’, ‘XQ33-9’, ‘XQ37-5’, ‘XQ42-9’, ‘XQ45-7’ and ‘JCL’, were identified based on SI. Integrating the three parameters, it was clear that both hulls and seeds involved in PHS resistance in intact spikes of hulless barley and there was no long-existent embryo dormancy found among the test genotypes. All the genotypes, except ‘XQ45-7’, had detectable α-amylase activity on the 4th day after germination. There was PHS resistance imposed by the hull and seed per se and the two factors can act together or independent of each other. Besides, landraces or Tibet hulless barley had a wider variation and relatively more PHS resistance when compared with cultivars or Sichuan hulless barley. No significant difference was found among hulless barley of different seed colors. The correlation analysis showed PHS resistance was negatively related to hundred grain weight, days to flowering, days to maturity, spike length, awn length and flag length but not related to plant height. This study provides essential information and several donor parents for breeding of resistance to PHS. 3. Alpha-amylase isozymes are encoded by a family of multigenes. They highly express in germinating seeds and is closely related to seed germination ability. In barley germinating seeds, the activity of high pI α-amylase is much higher than low pI α-amylase. The aim of this study was to determine the relationship between preharvest sprouting resistance of hulless barley and the gene structure of Amy1 gene which encodes high pI α-amylase. The coding region and cDNA of Amy1 gene of three resistant accessions, including ‘XQ32-5’ (TR1), ‘XQ37-5’ (TR2), ‘XQ45-7’ (TR3), two susceptible accessions ‘97-15’ (TS1), ‘9657’ (TS2) and one highly dormant barley accession ‘SAMSON’ (SAM) was cloned. Analysis of their DNA sequences revealed there were three exons and two introns in Amy1 gene. Thirteen variable sites were in exon2 and exon3, 2 variable sites were in intron2. SAM and TS1 had a GAACT insert segment in the same site in intron2. Only 8 variable sites caused the change of amino acid residues. There were 99% of similarity between the tested hulless barley and some of the variable sites might be related with preharvest sprouting resistance. Then, we investigated the expression level of Amy1 gene in the 7-day germination test. Results of quantitative real-time PCR indicated that the relative expression trends of Amy1 gene were the same but had significant differences in the increase fashion between hulless barleys and no detectable expression was found in SAM. Susceptible accessions had earlier expression and faster increase and reached the maximum on day 4 ~ day 5. Besides, total transcripts level was found lower in resistant accessions than susceptible accessions. This study indicated that α-amylase activity was highly related to the transcription level of Amy1 gene which not correlated to missense mutation sites. In conclusion, hulless barley, especially the landraces from Qinghai-Tibetan Plateau in China possesses high degree of variation in PHS performance, which indicates the potential of Tibetan hulless barley as a good source for breeding of resistance to PHS. This study provides several donor parents for breeding of resistance to PHS. Our results also demonstrate that agronomic traits may be used as assistants for PHS resistance selection in hulless barley. Besides, analysis of high pI α-amylase coding gene Amy1 revealed the relative high expression of was Amy1 one of the mainly reason of different PHS resistance level in hulless barley.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对15株白腐真菌进行了以玉米秸秆为基质的初步筛选,从中获得一株选择性系数较高的菌株Y10,并对其降解玉米秸秆的情况进行了研究。结果表明,在30天的培养过程中菌株Y10对玉米秸秆降解的选择性系数都大于1,第15天选择性系数最高为3.88。对未经降解和降解过的玉米秸秆分别作了紫外光谱和红外光谱分析,结果表明,经该菌降解后玉米秸秆的化学成分发生了很大变化,且木质素的降解程度要大于纤维素的降解程度。对菌株Y10进行了ITS-5.8S rDNA序列鉴定,初步判定其为Cerrena sp.。 为了考查不同的外源添加物对菌株Y10降解玉米秸秆的影响,在以玉米秸秆为基质的固态发酵培养基中分别添加了7种金属离子、8种碳源、6种氮源。结果显示,这7种金属离子均能促进木质素的降解,并且一定浓度的某些离子明显抑制纤维素的降解;其中添加0.036%的MnSO4·H2O和0.36%的MgSO4·7H2O对纤维素降解的抑制作用比较强,降解率分别为0.96%和1.31%,木质素的选择性系数分别达到了34.40和20.17。8种碳源中除麦芽糖外都能促进木质素的降解,除微晶纤维素外都明显促进纤维素的降解。6种氮源中酒石酸铵、硫酸铵、草酸铵和氯化铵的添加都会使该菌生长变慢,而且氮源浓度越高菌丝生长越慢。外加碳源和金属离子对半纤维素降解和选择性系数的影响不大。 同时对菌株Y10在液态培养下产木质素降解酶的条件和培养基做了优化。结果表明,在初始产酶培养基中,菌株Y10的漆酶酶活在第10d达到最高,锰过氧化物酶酶活在第11d达到最高,基本上检测不到木质素过氧化物酶。菌株Y10产漆酶的最适温度为32℃,最适PH为6.0;产锰过氧化物酶的最适温度为32℃,最适PH为6.5。菌株Y10产漆酶的最佳碳源为甘露糖,最佳氮源为酒石酸铵,最适诱导剂VA浓度为3 mmol/L,最适表面活性剂TW-80浓度为1%。 利用响应面法对其产漆酶的培养基进行优化,优化后的培养基配方为葡萄糖10.00 g/L,酒石酸铵0.50 g/L,大量元素296.50 ml/L,微量元素100.00 ml/L,NTA 1.40 g/L,VA 5.00 mmol/L,吐温-80加入量为0.10%。进行了菌株Y10产漆酶的验证实验,实测酶活为5282.56 U/L,与预测酶活5162.73 U/L接近。在优化后培养基中,菌株Y10在第14 d达到生长的最高峰,第20 d时,漆酶酶活最高,为11325.00 U/L;第16 d时,锰过氧化物酶酶活最高,为30.77 U/L。 对菌株Y10的漆酶酶学性质做了初步的研究,结果显示,酶反应的最适温度为40℃-65℃,最适PH为3.0。在40℃,PH=3.0时,漆酶催化ABTS反应的米氏方程为 。 Fifteen white-rot fungi based on corn stalk were screened. One white-rot fungus Y10 with high selectivity value was obtained. The degradation of corn stalk was initially studied. The results indicated that the selectivity value was above 1 during the 30 day-cultivation and the highest was 3.88 after 15 days. The composition of untreated and treated stalk was analyzed through ultraviolet spectroscopy and infrared spectroscopy. It was found that the composition of treated stalk was greatly altered and the degree of the degradation of lignin is greater than the cellulose. Y10 was identified as Cerrena sp. by ITS -5.8S rDNA sequence analysis. The influence of metal ions, carbon sources and nitrogen sources on corn stalk degradation by white-rot fungus was studied. While all seven metal ions could promote lignin degradation, the cellulose degradation was best inhibited at certain ion concentrations. Notably, when 0.036% MnSO4·H2O and 0.36% MgSO4·7H2O were added into the medium, the cellulose degradation was restrained to the extents that the coefficients of lignin selectivity rose to 34.40 and 20.17 respectively. It was also found that all carbon sources except maltose can promote lignin degradation. The addition of carbon sources other than microcrystalline cellulose significantly promoted cellulose degradation. The addition of the nitrogen sources, ammonium tartrate, ammonium sulfate, oxalate, ammonium chloride, resulted in remarkable inhibition to mycelium growth; the larger the concentrations of nitrogen sources are, the slower the mycelium grew. The addition of carbon sources and metal ions had less impact on the degradation of hemicellulose and selectivity value. Meanwhile, we optimized the conditions and culture medium of the lignin-degrading enzyme production of strain Y10. The results showed that in the initial culture medium, the Lac activity was highest at the 10th day, the MnP activity was highest at the 11th day and the LiP could not be detected. The optimum condition of Lac was at temperature 32 and PH =6.0 and the optimum condition of MnP was at temperature 32 and PH =6.5. The optimum carbon source for Lac was seminose, the optimum nitrogen source was ammonium tartrate, the optimum content of VA was 3 mmol/L, the optimum content of TW-80 was 1%. PB and RSM were used to optimize the culture medium of laccase by white-rot fungus Y10. The optimum culture medium was consist of glucose 10.00 g/L, ammonium tartrate 0.50 g/L, macro elements 296.50 ml/L, trace elements 100.00 ml/L, NTA 1.40 g/L, VA 5.00 mmol/L, TW-80 0.10%. Under the optimal conditions, the activity of laccase was 5282.56 U/L and the experimental value agreed with the predicted value 5162.73 U/L. The biomass was highest at the 14th day, the Lac activity was highest at the 20th day, the MnP activity was highest at the 16th day. The results of the studies on the characteristics of Lac showed that the optimum temperature for Lac activity is 40℃-65℃ ; the optimum PH for Lac activity is 3.0 and under 40℃,PH=3.0, the Michaelis-menten equation of Lac catalized ABTS oxidation was .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文从不同厌氧生境中获得7组(C-2、Y-2、L-2 、NZ、H-3、CZ、L-3)具有纤维素降解能力的复合菌系。经过不断传代、淘汰纤维素降解能力降低的菌系,最后得到一组高效、传代稳定的厌氧纤维素分解复合菌系L-3。该菌系可使滤纸在42 h内溃烂,并能在分解纤维素的同时产氢气。对L-3复合菌系的产酶条件进行了研究,结果表明,在实验范围内该菌系的产酶最适条件为:pH 6.5,温度37 ℃,接种量5 %,最佳碳源为滤纸,最佳氮源为硫酸铵。第10天测得羧甲基纤维素酶(CMCase)、滤纸酶(FPA)、外切葡聚糖酶(C1)、β-葡聚糖苷酶(β-glucodase)的酶活分别为0.216 U/ml、0.101 U/ml、0.132 U/ml、0.002 U/ml,滤纸失重率70.6 %。发酵代谢产物乙醇和丁酸含量分别可达1378 mg/L 、2695 mg/L,发酵产生的气体中氢气含量最高可达70.2 %。DGGE结果表明该菌系主要由14种菌组成,其中有三株菌在发酵前后菌数发生了明显的变化,说明在以滤纸为底物的降解过程中,这三株菌起到了重要作用,对这三株菌进行了分子生物学鉴定,初步定为Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp。 利用实验室分离得到的纤维素降解菌,最终配制出由10、X-1、X-13、ST-13、L-3组成的好氧-厌氧纤维素降解复合菌剂。以秸秆为发酵底物,菌剂接种量1%,利用复合菌剂预处理后的秸秆,发酵总产气量相对于对照提高了71.62%,甲烷含量最高可达70.08%。 A group of microbial consortia L-3 was isolated from the anaerobic fermentation residue of corn stalk, which could degrade cellulose and produce hydrogen. The CMCase, FPA, C1 and β-glucosidase activity of L-3 could reach to 0.216 U/ml, 0.101 U/ml, 0.132 U/ml and 0.002 U/ml, respectively. In the filter degrading process, the filter paper collapsed in the liquid culture within 42 h and the filter degrading rate could reach to 70.6% in the 13 days, meanwhile, hydrogen was determined and the highest hydrogen content was 70.2%. The optimum cellulase-degrading conditions were filter papaer as the carbon source, (NH4)2SO4 as the nitrogen source, 37 ℃ and pH 6.5 in this experiment. DGGE results showed that the microbial consortia L-3 mainly included 14 strains. The amount of 3 strains were changed during the fermentation. These strains were identified as Clostridium phytofermentans、Clostridium cellulovorans、Desulfovibrio sp by 16S rDNA sequence analysis. The cellulose- degrading microbial agent was composed by 10, X-1, X-13, ST-13, L-3 which were isolated in the laboratory. The straw pretreated by cellulose-degrading microbial agent was used to ferment, the total biogas production increased by 72% comparing to the control. The content of methane could reach to 70.08%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

组特殊自养氨氧化混合种群,表现:无机环境种群生长迅速、生物量高;在一个完全无机的自养生长环境中,不仅保持高氨氧化速率,并出现丰富的异养微生物种群;该种群置于异养、厌氧环境中,迅速表现出产氢特征。对于这样一个特殊的生态体系,研究其共生机理,以及联接这些种群之间的碳源和能源问题,将具有非常重要意义。我们拟从种群特征、细胞表面分泌产物、游离体系产物多糖、蛋白和脂肪酸方面开展研究。 第一部分,自养氨氧化混合种群的基本特征。采用氨氧化培养基,进行种群氨氧化特征研究;采用扫描电镜观察自养混合种群的微观特征;沉降、离心去除微生物种群,分析水相中的总有机碳、糖类等物质;利用LB培养基进行种群的分离、纯化,并采用DGGE手段对微生物种群结构进行分析。结果表明,接入菌种后(2/5000(V/V)),培养液中氨(200mg/L)在3-5天内快速降解;亚硝酸盐与氨氮变化呈负相关趋势,仅有少量硝酸盐含量(< 30mg/L)。氨氧化种群的生物量增长与氨氧化趋势一致,初始生物量7.75 mg/L(蛋白含量),3-5天后生物量快速增长,并达到最高63.06 mg/L(蛋白含量)。电镜图片显示,种群外包裹一层粘液。离心除去菌体后,检测培养液总有机碳和糖的含量,同样表现出与生物量增长相似的特征,分别由初始的3.73、2.35 mg/L,3-5内天迅速增加,并分别达到最大值35.19、27.45 mg/L。经初步分离、纯化并对纯化菌株进行测序,获得了10株异养微生物分别为布鲁氏菌科苍白杆菌属、纤维单孢菌、类芽孢菌属、黄杆菌属、无色杆菌、鞘脂单胞菌、嗜麦芽寡养单胞菌、噬氢菌属、硫红球菌、假单胞菌;DGGE显示,约有20分条离带,我们对其中的两条优势条带进行切割回收测序,鉴定为欧洲亚硝化单胞菌(Nitrosomonas eur)。 第二部分:混合种群自养-异养菌共生的可能机制。在对微生物种群特征初步分析基础上,针对胞外糖类组分可能被微生物代谢分解,我们重点对微生物细胞蛋白质与糖类进行分析。采用超声结合RIPA裂解液裂解,SDS-PAGE电泳分析混合种群总蛋白种类,并通过氨基酸分析仪及红外光谱法分析氨基酸组成及蛋白红外特征。采用超声破碎结合反复冻融对细胞样品进行处理,提取液采用醇沉、Sevage脱氮白,凝胶过滤方法脱盐和分级分离。对提取物的糖分析包括:紫外扫描,红外光谱,核磁共振,单糖组成分析;扫描电镜观察菌群破裂现象。SDS-PAGE分析结果表明:氨氧化种群不同生长阶段都显示出42kD蛋白表达量很高,d4时42kD蛋白表达已经很强,4-7d内一直持续这种过量表达,直到d8后表达开始减弱。说明42kD蛋白可能与氨氧化密切相关。红外光谱分析显示:细胞提取物的特征峰分布在3427.42cm-1、1718.18 cm-1和1681.72 cm-1、1160.07和1086.74 cm-1,分别对应为OH、 C=O、C-O-C基团,表明具有蛋白的典型特征;氨基酸分析显示蛋白中的Gly,Asp,Ala,Glu含量相对较高。 提取物中胞外多糖分离谱图得到不均一组分,共得到6个收集峰;紫外扫描在201-213 nm处有多糖吸收峰,同样表明多糖成分不均一性;多糖红外光谱特征峰主要分别在3400.49 cm-1、2920.28 cm-1、1154.54和1087.52 cm-1,对应OH、-CH2- or CH 、C-O-H or C-O-C等多糖特征基团;多糖提取物核磁共振1H d4.3~5.9之间出现强吸收峰,这是1H中,多糖存在的明显证据,1H NMR中,其中O-乙酰基的甲基上的氢信号为d1.1~1.3之间。糖肟全苯甲酸酯衍生物的HPLC测定中,得到单一的单糖峰,由于时间问题,还未进行更深入的试验;电镜图片显示,种群中的细胞有大量的破裂现象。 实验表明,自养氨氧化混合种群显示出快速的氨氧化速率,氨氧化过程生物量和有机质的增加明显。微生物种群包裹粘液层,并分离纯化出大量的异养菌;去除菌体后的游离培养液中存在有机质(包括多糖)说明无机自养生长体系中存在异养菌生长、繁殖的二次碳源;细胞提取物中蛋白条带数目多、种类丰富;细胞多糖提取物具有明显的多糖特征,以及单糖的存在。结合种群的显微特征和游离体系中的有机质的检测结果,我们认为,无机自养生长体系中,种群细胞生长过程中发生的破裂现象可能是导致大量的蛋白、多糖释放到游离胞外,并成为其他异养菌生长的碳源和氮源。这可能是自养体系中,大量异养菌共生的可能机制,至于是什么原因引起种群生长过程中产生的破裂现象,还有待下一步深入研究。 A group of mixed autotrophic ammonia oxidizing populations, having much biological characteristic tested by concerned personnel for pilot test: Performed rapid population growth and obtained high biomass in inorganic environment; Not only maintained a high rate of ammoxidation, promoted a wealth of heterotrophic microbial populations growth in a totally inorganic and autotrophic growth environment; Placed in heterotrophic and anaerobic environment,had the performance characteristics that could rapidly produce hydrogen.For such a special ecological system, Study its symbiotic mechanism and the connection between these populations of carbon and energy issues, will have a very important significance. We intended from the characteristics of the population, the secretion product of cell surface, free substance in the liquid medium like polysaccharide, protein and fatty acids carrying out research. Part I: The basic features of mixed autotrophic ammonia oxidizing populations . Use inorganic liquid medium, processed study for ammonia oxidation characteristics of the population; we used scanning electron microscopy to get micro-features of autotrophic ammonia oxidizing populations .The medium was carried out settlement and centrifugal then removed the microbial populations, after all of that we analysis the water phase for total organic carbon(TOC), carbohydrate and other substances; Solid ammonia oxidizing medium was adopted to separation and purification of population, DGGE means was for structure analysis of microbial population. The results showed that after the inoculum of bacteria (2 / 5000 (V / V)), ammonia in the culture medium (200 mg / L) was rapid degradation in 3-5 days; ammonia and nitrite have the negative correlation between changes in the trend, then only a small amount of nitrate content (<30mg / L). The biomass growth of ammoxidation population in line with the trend of ammonia oxidation, the initial volume of it was 7.75 mg / L (protein content), in 3-5 days upto 63.06 mg / L (protein content). Electron microscope image showed, the populations were wrapped in a layer of mucus, including the a large number ruptted micorbe , Centrifuge to remove bacteria, then detected the medium for total organic carbon and sugar content, result took on the same characteristics with biomass growth, that were from the initial 3.73、2.35 mg / L respectively, in 3-6 days achieved rapid increase in the maximum to 35.19、27.45 mg / L respectively. After initial separation、 purification ,then processed sequencing to strains purified and got the result that there were 10 heterotrophic microorganisms : Brucella Branch pale bacillus, Cellu lomonas, Bacillus species category, a Flavobacterium, colorless Bacteria, Aeromonas sheath fat, little support maltophilia Aeromonas, macrophages species hydrogen, sulphur-MI, Pseudomonas bacteria spores; DGGE display, there were 20 separation bands approximately. Part II: Mixed populations that autotrophic - heterotrophic bacteria symbiotic mechanism. On the basis of preliminary analysis of microbial population characteristics, aiming at extracellular carbohydrate components might be decomposition by microbial, we focused on microbial cell protein and carbohydrate analysis. Using ultrasound combined with RIPA lysis cracking the cells, SDS-PAGE electrophoresis analysis the total protein species of the population, and through the amino acid analyzer studied the compositions of amino acid and infrared spectroscopy analysis of a protein infrared characteristics. Using ultrasound combined with repeatedly freezing and thawing to treated the cell sample, then took the means that alcohol precipitation, deproteinization by Sevage, gel filtration aimed at desalination and grade separation to deal with the lysates . The extraction of sugar analysis included: UV scanning, IR, NMR, single-sugar composition analysis. SDS-PAGE analysis showed that: 42 kD protein expression was very high at different growth stages of mixed autotrophic ammonia oxidizing populations , on the fourth day, 42 kD protein expression had been very strong, 4-7d, it had continued this excessive expression, then started to weaken after 7 days. 42 kD protein that might be closely associated with ammonia oxidation. Infrared spectral analysis showed that: cell extracts with the characteristic that the peak distribution in 3427.42 cm-1、1718.18 cm-1 and 1681.72 cm-1、1160.07 cm-1 and 1086.74 cm-1 corresponding to OH、C = O、C-O-C Groups which had the typical characteristics of protein; and analysis showed that amino acids including Gly, Asp, Ala, Glu ,the content in the protein is relatively high. Exopolysaccharide in the extracts had the separation map that it was uneven, received a total of six collection peaks by the detection mode of phenol-sulphruic acid method ; ultraviolet scan in the 201-213 nm department had polysaccharide absorbing peak, the same ingredients that polysaccharide heterogeneity; infrared polysaccharide spectral characteristics of the main peak at 3400.49 cm-1, 2920.28 cm-1, 1154.54 and 1087.52 cm-1, corresponding OH,-CH2-or CH, C-O-H or C-O-C;and other characteristics of polysaccharide group; 1H NMR of polysaccharide extract appeared absorption peak between d4.3 ~5.9, which is the apparent evidence of polysaccharide, In 1H NMR, the hydrogen signal of one of O-acetyl was between 1.1 to 1.3. The determination of Sugar oxime whole benzoate derivatives by HPLC, there was a single-sugar peak, as a matter of time, yet more in-depth test. Summary: Mixed autotrophic ammonia oxidizing populations show us that it had the ability in ammonia oxidizing and it was great, organic matter and biomass increased significantly in the process of ammonia oxidation. Microbial populations was wrapped up slime layer, the phenomenon of cell breakdown obviously, and there were a lot of separation and purification of the heterotrophic bacteria; a lot of organic matter (including polysaccharides)remined in the medium that removal of cell indicated the inorganic system existed secondary carbon sources that could be used by the heterotrophic bacteria ; there were a large number proteins bands of cell extract, rich variety; cell extracts of polysaccharide had obvious characteristics of polysaccharide, and the existence evidence of single-sugar. Combined population of microscopic characteristics and free of organic matter in the test results, we believe that the health of inorganic system, population growth occurred in the course of the breakdown of the phenomenon is likely to lead to a lot of protein and polysaccharide released into the extracellular free, And other heterotrophic bacteria use them to the growth as carbon and nitrogen. This may be autotrophic system, the large number of heterotrophic bacteria symbiotic mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文对不同菌种(酵母菌和运动发酵单胞菌)快速生产燃料乙醇的条件进行了研究,实现了鲜甘薯快速转化为燃料乙醇。全文分为两部分: 第一部分:酵母菌快速生产燃料乙醇的条件研究。通过单因素试验,酵母菌快速生产燃料乙醇的条件为:发酵方式采用边糖化边发酵(SSF),蒸煮温度为85 ℃,料水比2:1(初始糖浓度 210 g/kg),糖化酶用量0.75 AGU/g 鲜甘薯,接种量10%(v/w)。在最优条件下,经过24 h发酵,乙醇浓度可达97.44 g/kg, 发酵效率为92%,发酵强度为4.06 g/kg/h。由于采用了低温蒸煮和SSF,可以大大节约能耗,从而降低乙醇生产的成本。同时,利用摇瓶优化的条件,进行了10 L,100 L,500 L发酵罐的放大试验,由于发酵罐初期可以人为通氧,使菌体能迅速积累,发酵时间缩短2 h,发酵效率在90%以上。 第二部分:运动发酵单胞菌快速生产燃料乙醇条件研究。通过单因素试验和正交试验获得了发酵的最佳参数:初始pH值6.0-7.0,硫酸铵5.0 g/kg,糖化酶量1.6 AUG/kg淀粉,初始糖浓度200 g/kg,接种量12.5%(v/w)。经过21 h发酵,乙醇浓度为95.15 g/kg,发酵效率可达94%。同时对不灭菌发酵也进行了研究,发酵效率可达92%。为鲜甘薯运动发酵单胞菌燃料乙醇的工业化生产打下基础。 对发酵结束后的残糖进行了研究。通过薄层层析和葡萄氧化酶测定证明:无论是酵母菌还是运动发酵单胞菌发酵结束后的发酵液中都不含葡萄糖。经过HPLC进一步分析残糖说明:发酵液中已没有葡萄糖成分;经糖化酶水解后仍没有葡萄糖出现;但经酸水解后又出现了葡萄糖,说明结束后的残糖是一些低聚糖结构。有关残糖的结构需要进一步研究。可以通过开发高效的低聚糖水解酶来降低发酵液的残糖,提高原料的利用率。 A new technology for rapid production fuel ethanol from fresh sweet potato by different microorganisms (Saccharomyces cerevisiae and Zymomonas mobilis) was gained in this research. The paper involved two parts: Part 1: The study on fuel ethanol rapid production from fresh sweet potato by Saccharomyces cerevisiae. The following parameters of Saccharomyces cerevisiae was investigated by a series of experiments: fermentation models, cooking temperature, initial sugar concentration and glucoamylase dosage. The results showed that SSF (simultaneous saccharification and fermentation) not only reduced the fermentation time (from 30 to 24h) but also enhanced the ethanol concentration (from 73.56 to 95.96 g/kg). With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg which the fermentation yield could reach to 92% and ethanol productivity 4.06 g/kg/h from sweet potato enzymatic hydrolysis. Furthermore, the savings in energy by carrying out the cooking (85 ℃) and saccharification (30 ℃) step at low temperature had been realized. The results were also verified in 10 L, 100 L and 500 L fermentor. The fermentation yield was no less than 90%. The fermentation time of fermenter was shorter than Erlenmeyer flask. This may be that the aeration in the early fermentation period is available, which lead to the rapidly commutations of biomass. Part 2: The technology of ethanol rapid production with simultaneous saccharification and fermentation ( SSF ) by Zymomonas mobilis,using fresh sweet potato as raw material was studied. The effects of various factors on the yield of ethanol were investigated by the single factor and the orthogonal experiments. As a result, the optimal technical conditions were obtained from those experiments:initial pH value 6.0-7.0, nitride 5.0 g/kg,(NH4)2SO4, glucoamylase 1.6 AUG/kg starch, inoculums concentration 12.5% (v/w). The Zymomonas mobilis was able to produce ethanol 95.15 g/kg, with 94% of the theoretical yield, from fresh sweet potato after 24 h fermentation. The fermentation efficiency of non-sterilized was also reach to 92%. We also analyzed the final fermentation residual sugars of Saccharomyces cerevisiae and Zymomonas mobilis. When the residual sugars were analyzed by thin-layer chromatogram and glucose oxidase, there was no glucose. The analysis of reducing sugars by HPLC showed that there was no glucose existed in the fermentation liquor. However, the glucose appeared after being hydrolyzed by acid. It is indicated that the residual sugars in the final fermentation liquor were the configuration of oligosaccharide, which was linked by the special glycosidic bonds. It was feasible for reducing residual sugars to develope the enzyme that can degradation the oligosaccharide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

目前对PVA生物降解研究重点逐渐转移到对PVA降解菌和PVA降解酶的研究开发上,随着对PVA降解高效新菌株的不断发现和PVA降解酶作用机理和分泌机制的深入了解,利用高效微生物或酶法治理PVA这类高聚物的污染将具有较大的应用潜力。本论文研究工作正是基于这种客观条件下进行的,对本实验室前期分离的PVA降解菌株P1、共生菌B1+B2、Pa、Pb为研究对象,重点研究了菌株P1和共生菌B1+B2的产酶条件和产酶特性,验证找出了影响菌株P1产酶的生长因子,论证了菌株B1+B2的产酶特性,优化得出了菌株B1+B2的最佳产酶条件;然后对共生菌B1+B2的PVA降解酶的稳定性进行了研究;最后研究了最佳组合菌的产酶特性和最佳产酶条件。主要研究结果如下: 1 通过对菌株P1产酶因子的研究,找出了核黄素是菌株P1产酶的必须因子,在以淀粉为碳源时,核黄素只是产酶的必须因子,而不是菌体生长的必须因子;在以PVA为碳源时,核黄素既是生长的必须因子,也是产酶的必须因子,是菌株P1的生长因子。 2 对共生菌B1+B2的产酶条件和产酶特性进行了研究,并通过正交实验找出了影响菌株产酶的主要条件和菌株产酶的最佳条件。 3 对共生菌PVA降解酶的稳定性进行了研究,确定了影响酶稳定性的主要理化条件。 4 通过对菌株降解性能的比较,确定菌株Pa、Pb、共生菌、P1的作为组合菌的组成菌,然后通过复配实验确定出菌株的最佳组合为菌株Pa、P1、共生菌,最后通过正交实验确定最佳组合菌的最佳配比。 5对影响组合菌产酶的因素进行了研究,通过正交实验确定了影响组合菌产酶的主要因素和最佳产酶条件。 本文通过对PVA降解菌株产酶条件和特性的研究,旨在为PVA降解菌生产酶制剂及进一步优化PVA降解菌在PVA废水治理中的应用提供理论和应用依据。 Now the PVA-degrading bacteria and polyvinyl alcohol-degrading enzyme are the key studies on the PVA biological degradation. It has great application potential using special bacteria and enzyme to treat pollution of PVA, with some high efficient Strain and enzyme were found. The study of this paper was based on that objective condition. The stain P1, symbiotic bacteria B1+B2, stain Pa and strain Pb were studied .The conditions of enzyme production and enzyme production characteristic of stain P1, symbiotic bacteria B1+B2 were our key study, we tested and verified the growth factor which effected enzyme production of strain P1, demonstrated enzyme production characteristic of symbiotic bacteria B1+B2, optimized and obtained the optimum conditions of enzyme production; then we studied the stability of polyvinyl alcohol-degrading enzyme of strain B1+B2; last the enzyme characteristic and the optimum conditions of alcohol-degrading enzyme production of optimum combination stains were studied. The main study results are below: 1. Through the study of enzyme production factor we found that lactoflavin is the necessary factor in strain P1 enzyme production. When we used starch to be carbon energy, lactoflavin is only the necessary factor of enzyme production, but not growth factor. When we used PVA to be carbon energy, lactoflavin was not only the necessary growth factor ,but also the necessary enzyme production factor.So it was the growth factor of strain P1 2. The enzyme production conditions and enzyme production characteristic of symbiotic bacteria B1+B2 were studied. Through the orthogonal experimental design, the main conditions which effected the enzyme production and the optimum conditions of enzyme production were obtained 3. Through the study of the stability of polyvinyl alcohol-degrading enzyme, the main physical and chemical conditions which effected the enzyme stability were 4. The stain P1,symbiotic bacteria B1+B2, stain Pa and strain Pb were selected to form combination bacteria. The stain P1,symbiotic bacteria B1+B2,stain Pa were the optimum combination through duplication experiment. Then the optimum ratio was obtained through orthogonal experiment. 5. Studied the factors which effected the polyvinyl alcohol-degrading enzyme activity, then through orthogonal experiment, the main factors and condition of enzyme production which effected the combination bacteria were achieved. The result of the study was valuable for the ferment of the PVA-degrading enzyme and the optimization of the PVA-degrading performance in the PVA wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文根据我们实验室建立的发酵产物中辅酶Q10定性定量检测方法,筛选得到一株可以代谢产生较多辅酶Q10的野生菌株放射形土壤杆菌(Agrobacterium radiobacter No.50)。 为了提高放射形土壤杆菌的辅酶Q10的产量,本实验利用液体培养研究了单因素对菌株辅酶Q10产量的影响,并用正交法确定了最佳液态发酵条件。最佳发酵培养基是:葡萄糖20g,蔗糖40g, 硫酸铵10g,玉米浆30g, 酵母膏3g,K2HPO4 3g,MgSO4.7H2O 1g,蒸馏水1000mL,pH 7.0-7.2。最佳发酵条件是:转接斜面菌种到种子培养基, 转速220r/min、温度28。C培养24h后,转入发酵培养基(250mL三角拼装液量为50mL,pH 7.0), 接种量为10%,转速220r/min、温度28。C,培养120h。在此条件下,菌体湿重约为50g/L,辅酶Q10含量约为20mg/L。 本文以放射形土壤杆菌为出发菌株进行诱变育种,以期获得辅酶Q10高产菌。根据微生物育种原理、参照辅酶Q10的代谢调控机制,以野生型放射形土壤杆菌(Agrobacterium radiobacter No.50)为出发菌株,采用紫外线和亚硝基胍复合诱变技术,依次筛选得到菌体提取物M抗性菌ARM-7、烟草提取物T抗性菌株ARMT-26、Vk3抗性菌株ARMTV-25、链霉素抗性菌株ARMTVS-32,菌株ARMTVS-32产量达到了36.8mg/L,与原始出发菌株相比,产量提高了77%。 研究了茄尼醇、对羟基苯甲酸、橘子皮提取物D、胡萝卜提取物E、烟草提取物对ARMTVS-32合成辅酶Q10的影响,结果表明这些物质对菌体合成辅酶Q10有一定促进作用,添加0.2g/L茄尼醇时,辅酶Q10含量提高了17%,达到了40.7mg/L;添加1.2g/L橘子皮提取物D时,辅酶Q10含量提高了13.8%,达到了39.6mg/L;添加0.5g/L胡萝卜提取物E时,辅酶Q10含量提高了25.3% ,达到了43.6mg/L;添加8g/L烟草提取物时,辅酶Q10含量提高了12.6%,达到了39.2mg/L。 Production of Coenzyme- Q10 (CoQ10) by fermentation is considered as a process with broad prospects.Quantitative Analysis of CoQ10 in the culture of microbe by TLC—UV spectrophotometry was developed, by using this method we got the strain Agrobacterium radiobacter,which was isolated from forest soil of southwest of China. The effect of the single factor on CoQ10-production ability of the strain was examined by liquid cultured, and its best optimum cultivation conditions were established by orthogonal method. The results showed that the optimum fermentation conditions were as following: carbon sources glucose 20g/L,sucrose 40g/L; nitrongen sources (NH4)2SO4 10g/L,maize liquid 30g/L;yeast extract 3g; K2HPO4 3g/L,MgSO4.7H2O 1g/L; initial pH was 7 and volume of medium(medium volume vs flask volume) was 50mL/500mL, incubating for 120h on a rotary shaker at 220 rpm and 28℃.Under these conditions, the biomass and CoQ10 concentration reached 50g/L and 20mg/L respectively. According to the biosynthesis mechanism of CoQ10 and breeding theory, CoQ10 over-production strains were screened by UV--NTG. mutation using Agrobacterium radiobacter No.50 as parent strain. A microbe-juice resistant mutant ARMTVS-32, which also could resist tobacco-juice, VK3 and streptomycin, was screened out from an agar plate. The CoQ10 content of ARMTVS-32 reached 36.8mg/L, which was 77% higher than the initial strain. In addition, We discussed the effects of some organic substrates on the synthesis of CoQ10 in ARMTVS-32. The results showed that solanesol, orange juice D, carrot juice E and tobacco juice could promote the CoQ10 accumulation in the cells. The CoQ10 content of ARMTVS-32 reached 40.7mg/L when added 0.2g/L solanesol,it reached 39.6mg/L when added 1.2g/L orange juice D,it reached 43.6mg/L when added 0.5g/L carrot juice E. it reached 39.2mg/L when added 8g/L tobacco juice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文研究了两种微生物及其组合沥取、回收用微生物法治理电镀铬废水产生的铬污泥中的铬。铬污泥富含C、N、O,含铬量为13%, 经X-光电子能谱分析铬以三价态(氢氧化铬)存在。二种微生物分别从一酸性矿水和酸性污泥中分离筛选得到,经鉴定为硫杆菌属 (Thiobacillus Beijerinek)的两个不同种,一为氧化亚铁硫杆菌(Thiobacillu ferrooxidans, TF), 另一为氧化硫硫杆菌 (Thiobacillus thiooxidans, TT)。研究并比较了不同微生物对污泥中铬的沥取能力,结果表明,TT菌沥取铬效率最高。振荡、动 态淋滤、静置等沥取方式经过研究表明动态淋滤为最佳,室温条件下(15-20℃),污泥浓度为20g/L时,总铬沥出率达60%时所需时 间:动态淋滤为48.5h,振荡和静置方式分别为91.22,81.6h。研究了不同温度、不同起始PH、不同污泥浓度及非成熟菌液对微生 物沥取能力的影响:(1) 沥取前期,温度对铬的沥出影响较大;微生物沥取反应基本属一级反应;温度与反应速率的关系基本符合 Arrhenius方程,但沥取后期这一特点并不突出。(2) 沥取液最适起始PH为菌液自然PH;PH值的人为改变将使铬的沥出大大降低。 (3) 污泥浓度与铬的沥出呈正相关,但浓度高于30g/L时,铬的沥出量不再增加。(4) 非成熟菌液沥出铬的能力较差,但沥取液中 微生物生长繁殖较为活跃。总结微生物沥取反应最佳沥取条件为:TT成熟菌液、污泥浓度10g/L、温度25-36℃、动态淋滤方式,此 时铬几乎可100%从污泥中沥出。经扫描电镜分析,沥取开始时,微生物紧密吸附于污泥颗粒表面上,表面紧密吸附为微生物发挥功 能提供了基础。微生物沥取污泥中铬的反应机理推测为:硫细菌代谢产硫酸或氧化Fe2+成Fe3+,利用酸,Fe3+ 及自身氧化酶系统 氧化污泥中Cr3+为Cr6+,Cr6+溶出结晶为CrO3。This paper has studied bioleaching and recovery of Chronium(Cr)from electroplating sludge by two consortum of bacteria and their combination, with sludge produced by microbiological process treating electroplating wastewater containing Cr as material. The share of Cr is 13% and its state is Cr (OH)3 in the sludge. One of the bacteria in the paper was isolated from acid sewage sludge and the other was from acid mineral water. The former was tested and determined as Thiobacillus ferroxidans(TF) and the latter was Thiobacillus thiooxidans(TT). Different microorganisms, responsible for the metal leaching activity, have great influence on the efficiency of leaching. The results showed that TT has biggest power. Experiments were conducted to examined effects of three different ways of leaching(Shaking, Down-leaching, Static-leaching). When temperature was in-door's (15-20℃)and concentration of the sludge was 20g/L, the bioleaching time required to reach 60% of Cr solubilization with the above three ways were 91.2, 48.5, 81.6h respectively. Down-leaching was proved to be the most efficient. The influence of different temperature, initial PH, concentration of the sludge and non-mature inoculum had been studied. The results obtained reveal that: (1) The variation of temperature is important during the time from initial to middle of leaching. The reaction of bioleaching belongs to first-order. The relation between the bioleaching rate constant(In k)and temerature can be expressed by Arrhenius function. (2) The fittest initial PH is the nature PH of mature inoculum. Any alteration with it could cause clearly negative effection. (3) The concentration of the sludge can make strong influence on the bioleaching efficiency. But when the concentration is above 30g/L, the increasing of Cr in the solution is little. (4) If non-mature inoculum acts as the bioleachin microorganism, little quantity of Cr would be gained from the sludge. But the micormass in the solution is very active. The results from electron microscope showed that microorganisms adhered to the surface of the sludge and the adherence was the first stage of the bioleaching. Some salts of Cr can be obtained afer the water of the bioleaching solution being evaporated. By analysing the results of experiment with X-Ray spectroscopy, the salt was identified as CrO3. The recovery rate of Cr is 78.4%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物质燃料乙醇是一种高度清洁的交通液体燃料,是减少温室气体排放,缓解大气污染的最佳技术选择。以非粮原料生产燃料乙醇可以在进行能源生产的同时保证粮食安全,有利于产业的可持续发展。在众多的非粮原料中,甘薯是我国开发潜力最大的生物质能源作物之一。我国占世界甘薯种植总面积和产量的90%。同时,甘薯的单位面积燃料乙醇产量远大于玉米和小麦。其成本是目前酒精中最低廉的,因此利用甘薯生产乙醇是发展生物质燃料乙醇的首要选择。目前采用薯类全原料主要采用分批发酵生产乙醇,其技术水平低,发酵强度低,一般在0.7-2.5g/(L•h),乙醇浓度低,甘薯发酵乙醇为6-8%(v/v),能耗高,环境负荷大,污染严重。针对上述问题,本文从菌株选育、原料预处理、中试放大、残糖成分分析等方面进行研究。 为了研究乙醇发酵生产规模扩大过程中,大型发酵罐底部高压条件下,CO2对酵母乙醇发酵的影响,我们通过CO2 加压的方法进行模拟试验,研究结果表明,发酵时间随压强的升高而逐渐延长,高压CO2 对乙醇发酵效率影响不大,在0.3 MPa 以下时,发酵效率均可达到90%以上。高压CO2 对发酵的抑制作用是高压和CO2 这两个因素联合作用的结果。高压CO2 条件下,酵母胞外酶和胞内重要酶类的酶活均表现出特征性。0.2 MPa 下,酶活性的变化趋势和0.1 MPa 条件下的较为一致。而0.3 MPa 下的酶活变化趋势与0.4 MPa 下的酶活更为接近。通过全基因表达分析发现在CO2 压力为0.3 MPa 下,乙醇发酵途径中多个基因表达量下调,同时海藻糖合成酶和热激蛋白基因表达量上调。 筛选耐高温的乙醇酵母菌株能够解决糖化温度和发酵温度不协调的矛盾,实现真正意义上的边糖化边发酵。高温发酵还能够降低发酵时的冷却成本,实现乙醇的周年生产。本研究筛选出一株高温发酵菌株Y-H1,进而我们对该菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性进行了分析。结果表明Y-H1 能够在40 ℃条件下正常进行乙醇发酵,发酵33h,最终乙醇浓度达到10.7%(w/w),发酵效率达到90%以上。同时发酵液最终pH 在3.5 左右,显示菌株具有一定的耐酸性能力。同时观察到40 ℃下,菌株的胞外酶和胞内乙醇代谢重要酶类的酶活性发生了变化,乙醇发酵途径中关键酶基因表达下调,而海藻糖合成酶与热激蛋白基因表达量上调,这些结果为进一步研究酵母菌耐热调控机理提供了依据。 糖蜜是一种大规模工业生产乙醇的理想原料,本研究利用选育高浓度乙醇发酵菌株结合配套的发酵稳定剂,研究了糖蜜高浓度乙醇发酵情况。结果表明采用冷酸沉淀预处理糖蜜溶液,采用分批补料的发酵方式,乙醇浓度最高达到了10.26% (w/w),发酵时间为42 h。同时观察到在糖蜜发酵中,乙醛含量与乙醇浓度存在一定的相关性。 快速乙醇发酵对于缩短乙醇生产周期、降低乙醇生产成本、减少原料腐烂损失具有重要意义。本研究诱变和筛选得到了一株快速乙醇发酵菌株10232B。在优化后的发酵条件下,采用10L 发酵罐进行分批乙醇发酵,经过18h,乙醇的最终浓度达到88.5g/L,发酵效率93.6%,平均乙醇生产速度达到4.92 g/L/h。此菌株在保持较高乙醇生产浓度的同时,拥有快速生产乙醇的能力,适合作为快速乙醇发酵生产菌种。 由于鲜甘薯具有粘度大的特点,传统液化糖化处理很难在短时间内充分糖化原料;高粘度的醪液也难以进行管道输送,容易堵塞管路;同时,也会降低后续的乙醇发酵效率。 本文采用了快速粘度分析法对鲜甘薯糊化粘度特性进行了分析,进而对预处理条件进行了研究,在最佳预处理条件下,糖化2h 后,醪液葡萄糖值最高可达99.3,粘度4.5×104 mPa.s,而采用传统糖化工艺,醪液DE 值仅为85.8,粘度大于1.0×105 mPa.s。 此预处理方法也可用于快速糖化不加水的醪液。后续的乙醇发酵试验表明,通过此预处理方法获得的糖化醪液对乙醇发酵无负面影响。 在前期已实现了实验室水平的鲜甘薯燃料乙醇快速乙醇发酵基础上,进一步将发酵规模扩大到500L,在中试水平上对甘薯乙醇发酵进行了研究。结果表明在500L 中试规模,采用边糖化边发酵(SSF)工艺,在料液比为3∶1,发酵醪液最高粘度为6×104mPa.s 条件下,发酵37h,乙醇浓度达到了12.7%(v/v),发酵效率91%,发酵强度为2.7 g/(L•h)。与目前国内的薯类乙醇发酵生产技术水平具有明显的优越性。 为研究甘薯、木薯乙醇发酵中残糖的组成,采用了高效液相色谱—蒸发光散射检测法,对乙醇发酵残糖进行了分析。结果表明,甘薯、木薯乙醇发酵残糖均为寡聚糖,主要由葡萄糖、木糖、半乳糖、阿拉伯糖和甘露糖构成。随着发酵时间延长,寡聚糖中的葡萄糖、半乳糖、甘露糖可被缓慢的水解释放。提高糖化酶量仅在一定程度上降低残糖,过量的糖化酶反而会导致残糖增加。同时发现3, 5-二硝基水杨酸法不能准确测定甘薯、木薯乙醇发酵中的残总糖含量。进一步筛选了两株残糖降解菌株,对甘薯乙醇发酵残糖的降解利用率均达到了40%以上,而且还能显著降低发酵醪液粘度。经形态学和rRNA ITS 序列分析,确定这两株菌分别属于为木霉属和曲霉属黑曲霉组。 通过对以甘薯原料为代表的非粮原料发酵技术研究开发,以期形成乙醇转化率高,能耗低,生产效率高、季节适应性好,原料适应性广,经济性强,符合清洁生产机制的燃料乙醇高效转化技术,为具有我国特色的燃料乙醇发展模式提供技术支持。 Sweet potato is one of the major feedstock for the fuel ethanol production in China. The planting area and the yield in China take 90% of the world. Sweet potato is an efficient kind of energy crops. The energy outcome per area is higher than corn or wheat. And the manufacture cost of ethanol is the lowest, compared with corn and wheat. So sweet potato is the favorable crop for the bioethanol production in China. However, the low-level fermentation technology restricts the development of ethanol production by sweet potato, including slow ethanol production rate, low ethanol concentration and high energy cost. To solve these problems, we conducted research on the strain breeding, pretreatment, pilot fermentation test and residual saccharides analysis. To study the impact of hyperbaric condition at bottom of the large fermentor on yeast fermentation, high pressure carbon dioxide (CO2) was adopted to simulate the situation. The results showed that the fermentation was prolonged with the increasing pressure. The pressure of CO2 had little impact on the ethanol yield which could reach 90% under the pressure below 0.3 MPa. The inhibition was combined by the high pressure and CO2. Under the high CO2 pressure, the extracellular and important intracellular enzyme activities were different from those under normal state. The changes under 0.1 MPa and 0.2 MPa were similar. The changes under 0.3 MPa were closer to those under 0.4 MPa. The application of thermotolerance yeast could solve the problem of the inconsistent temperature between fermentation and saccharificaton and fulfill the real simultaneous saccharification and fermentation. And it could reduce the cooling cost. A thermotolerance strain Y-H1 was isolated in our research. It gave high ethanol concentration of 10.7%(w/w)at 40 ℃ for 33 h. The ethanol yield efficiency was over 90%. At 40 ℃, the extracellular and important intracellular enzyme activities of Y-H1 showed the difference with normal state, which may indicate its physiological changes at the high temperature. Molasses is another feedstock for industrial ethanol production. By our ethanol-tolerance strain and the regulation reagents, the fermentation with high ethanol concentration was investigated. In fed-batch mode combined with cold acid deposition, the highest ethanol concentration was 10.26% (w/w) for 42h. The aldehyde concentration in fermentation was found to be related to ethanol concentration. The development of a rapid ethanol fermentation strain of Zymomonas mobilis is essential for reducing the cost of ethanol production and for the timely utilization of fresh material that is easily decayed in the Chinese bioethanol industry. A mutant Z. mobilis strain, 10232B, was generated by UV mutagenesis. Under these optimized conditions, fermentation of the mutant Z. mobilis 10232B strain was completed in just 18 h with a high ethanol production rate, at an average of 4.92 gL-1h-1 per batch. The final maximum ethanol concentration was 88.5 gL-1, with an ethanol yield efficiency of 93.6%. This result illustrated the potential use of the mutant Z. mobilis 10232B strain in rapid ethanol fermentation in order to help reduce the cost of industrial ethanol production. As fresh sweet potato syrup shows high viscosity, it is hard to be fully converted to glucose by enzymes in the traditional saccharification process. The high-viscosity syrup is difficult to be transmitted in pipes, which may be easily blocked. Meanwhile it could also reduce the later ethanol fermentation efficiency. To solve these problems, effects of the pretreatment conditions were investigated. The highest dextrose equivalent value of 99.3 and the lowest viscosity of 4.5×104 mPa.s were obtained by the most favorable pretreatment conditions, while those of 85.8 and over 1.0×105 mPa.s was produced by traditional treatment conditions. The pretreatment could also be applied on the material syrup without adding water. The later experiments showed that the pretreated syrup had no negative effect on the ethanol fermentation and exhibited lower viscosity. The fuel ethanol rapid production from fresh sweet potato was enlarged in the 500L pilot scale after its fulfillment on the laboratory level. The optimal ratio of material to water was 3 to 1 in 500L fermentor. With low-temperature-cooking (85 ℃) using SSF, the Saccharomyces cerevisiae was able to produce ethanol 97.44 g/kg for 37h, which reached 92% of theoretical yield. The average ethanol production rate was 4.06 g/kg/h. And the maximum viscosity of syrup reached 6×104mPa.s. The results showed its superiority over current industrial ethanol fermentation. The compositions of the residual saccharides in the ethanol fermentation by sweet potato and cassava were analyzed by high performance liquid chromatography coupled with evaporative light-scattering detector. The results showed that all the residual saccharides were oligosaccharides, mainly composed of glucose, xylose, galactose, arabinose and mannose. The glucose, galactose and mannose could be slowly hydrolyzed from oligosaccharides in syrup during a long period. To increase the glucoamylase dosage could lower the residual saccharides to a certain extent. However, excess glucoamylase dosage led to more residual saccharides. And the method of 3, 5-dinitrosalicylic acid could not accurately quantify the residual total saccharides content. Two residual saccharides degrading strains were isolated, which could utilize 40% of total residual saccharide and lower the syrup viscosity. With the analysis of morphology and internal transcribed spacer sequence, they were finally identified as species of Trichoderma and Aspergillus niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

制革行业是轻工行业中仅次于造纸业的高耗水、重污染行业,作为劳动密集型行业,在解决大量人口就业问题的同时,也对所在地区环境造成了严重污染。目前我国制革行业每年排放废水8,000~12,000万吨,废水中含铬约3,500 t,SS为1.2×105 t,COD为1.8×105 t,BOD为7×104 t,对水体污染严重。 本研究在对厌氧酸化工艺进行研究、一级好氧处理段进行工艺比选研究的基础上,获得了匀质调节—SBBR—BAF的生物处理工艺,并依托该工艺进行了生物强化处理的研究,考察了菌剂的强化运行效果及其处理水回用的可行性。 研究表明,在进水COD>3,000 mg/L,厌氧酸化具有很好的抗冲击作用,保证了好氧工艺出水COD<200 mg/L;在进水COD<3,000 mg/L,可只通过好氧处理实现出水COD<200 mg/L。厌氧酸化停留时间选择不当,会导致厌氧出水硫化物浓度升高,严重影响好氧系统,会使好氧活性污泥因中毒而解絮。 研究表明,当进水COD为2,000~2,500 mg/L,NH4+-N为130~146 mg/L时,COD、NH4+-N去除率SBBR分别为93.8%~96.6%和14.5%~55.9%,SBR分别为88.8%~94.9%和13%~50.7%,表明SBBR优于SBR。同时,研究发现SBBR污泥增长率为0.05 kgVSS/kgCOD,仅为SBR0.57 kgVSS/kgCOD的8.8%。此外,研究发现SBBR在停止运行后经3个运行周期可回复原油能力,而SBR池经9个周期培养也不能恢复,说明SBBR恢复能力明显优于SBR。 研究表明,以匀质调节—SBBR—BAF为主的制革废水处理工艺,出水水质稳定,进水COD 801~2,834 mg/L、NH4+-N 87~203 mg/L,出水COD<80 mg/L、NH4+-N<10 mg/L,基本达到中水回用标准;操作简单灵活,没有污泥回流系统,污泥产率低,污泥处理费用低;工艺基本不需要添加化学药剂,既节约成本、又避免了二次污染;两级生物膜使得该工艺具有很强的耐冲击负荷能力,特别适合制革废水水质水量波动大的特点。 研究表明,高效菌对系统的启动具有一定的促进作用,强化系统生物膜6天可以成熟,对照系统生物膜9天可以成熟。同时高效菌能加速COD降解,缩短停留时间,强化系统6~8 h可使COD<200 mg/L,对照系统8~10 h可使COD<200 mg/L。长期运行表明,强化系统的SBBR在COD和NH4+-N的去除率都优于对照系统的SBBR。最终出水COD强化系统平均为53 mg/L、对照系统为74 mg/L。在模拟循环过程中,强化系统均有更高的稳定性。可实现8次理论循环,而对照系统只能实现4次理论循环。 研究表明,通过合理的工艺设计,可以实现猪皮制革废水达到《污水综合排放标准GB8976-1996》一级标准,同时满足工厂部分用水要求。通过添加高效微生物,可提高生物处理系统处理能力,使处理水能够满足工厂的多次回用。 As a labour-intensive industry, tanning has created large amount of working opportunities as well as caused severe contamination to environment. And it is one of the highest water-consuming and polluting industry, only second to manufacturing. At present time, Chinese leather industry emits wastewater about 80,000,000~120,000,000 t annually, which contains chromium about 3,500 t, SS 1.2×105 t, COD 1.8×105 t, BOD 7×104 t and ambient riverhead has been polluted greatly. Based on the research of anaerobic acidification and comparison of SBBR and SBR, biotreatment process (Homogenization—SBBR—BAF) had been established to amend the disadvantages of traditional sewage treatment such as too much sludge, high cost of advanced treatment and NH4+-N can not reach the emission standard. Research on the bioaugmentation was also been carried out. Researches showed, when COD of influent was beyond 3,000 mg/L, anaerobic acidification could resist strong impact, thus COD of effluent was less than 200 mg/L; when COD of influent was less than 3,000 mg/L, only throughout aerobic sewage treatment could COD of effluent beless than 200 mg/L. False residence tiome of anaerobic acidification would lead to the higher effluent concentration of sulfide and disintegration of aerobic activated sludge. Researches showed SBBR worked a better than SBR: when influent between 2,000 and 2,500 mg/L, NH4+-N between 130 mg/L and 146 mg/L, COD, NH4+-N removal rate of SBBR was 93.3%~96.6%, 14.5%~55.9% respectively while COD, NH4+-N removal rate of SBR was 88.8%~94.9%, 13%~50.7% respectively. Sludge growth rate of SBBR was 8.8% of that of 0.05 kgVSS/kgCOD. Besides, SBBR could recovered after 3 operating periods while SBR worked no better after 9 operating periods.Therefore, SBBR excelled SBR. Researches showed, effluent quantity of tannery wastewater treatment process (Homogenization—SBBR—BAF) was stable. When COD of influent was between 801 and 2,834 mg/L, NH4+-N was between 87 mg/L and 203 mg/L, COD of effluent was less than 80 mg/L, NH4+-N was less than 10 mg/L, which achieved the standard of reuse. This biotreatment was featured in low cost, easy and flexible management, less sludge, no inverse sludge system. Besides, this technique required no chemical, which could lower the cost and avoid secondary pollution. Great resistant of impact due to two membranes and was suitable for tannery wastewater which was featured by fluctuation of influent quality and quantity. Researches showed effective microorganisms promotes the startup of the process.Biofilm in the bioaugmentation process matured with 6 days while biofilm in normal process matured with 9 days. Effective microorganisms could accelerate the degradation of COD and shorten the residence time. Aggrandizement system could make COD<200 mg/L with 6 to8 hours while cntrolling system could make COD<200 mg/L with 8 to 10 hours. Long-term operating shows that SBBR in the bioaugmentation system worked better than the normal system in the treatment of COD and NH4+-N. The average COC of effluent in bioaugmentation system was 53 mg/L, normal system was 74 mg/L. In the simulative circulation process,aggrandizement process, which could fulfill 8 times theoretical circulation, works more stably than controlling process which could only fulfill 4 times theoretical circulation. Researches showed that reasonable design could make the wastewater meet the first grade of discharging standard of National Integrated Wastewater Discharge Standard (GB8976-1996), and partially meet the demand of water using of the factory. Adding effective microorganisms could enhance the biotreatment and make the effluents reuse many times.