178 resultados para P450-catalyzed Hydroxylation
Resumo:
Transition of crystalline structure and morphology of metallocene-catalyzed butyl branched polyethylene with branch content has been studied. It was found that the long periods of the branched polyethylene were controlled by crystallization conditions for the lower branch content samples and by branch contents for the higher branch content samples. When the branch content increased to a critical value the branched polyethylene had no long period because the crystalline morphology was changed from folded chain crystal to a bundled crystal. The TEM observations supported the results. The transition of the crystalline morphology resulted from the reduction of lamellar thickness with increasing of branch content since the branches were rejected from the lattice. The reduction of lamellar thickness with increasing of branch content also resulted in lattice expansion and decrease of melt temperature of the branched polyethylene. (C) 2001 Kluwer Academic Publishers.
Resumo:
It was found that at neutral pH the hydroxylation reaction rate of phenol was accelerated with an increase of the amounts of 1,4-quinone (1,4-BQ), This acceleration was ascribed to the formation of semiquinone from 1,4-BQ. The semiquinone and 1,4-BQ were suggested to play a role of actual oxidant (electron transfer) in the catalytic cycle. With further reaction, most 1,4-BQ was converted into 1,4-hydroquinone (HQ) and the corresponding mechanism was proposed.
Resumo:
In an acidic aqueous solution of acetonitrile, the catalytic activity of the catalysts consisted of Pd(OAc)(2)/hydroquinone(HQ) with iron phthalocyanine (FePc) from various sources was obviously different in the oxidation of cyclohexene to cyclohexanone, The analysis of the FePc using IR spectroscopy, Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy(SEM) and BET surface area measurement indicated that the catalytic activity of the multicomponent catalytic system composed of iron phthalocyanines depends on the amount of mu -oxo FePc, the crystallinity and the surface structure of iron phthalocyanine.
Resumo:
All structural geometries of intermediates, transition states and product are, optimized at HF/ LANL2DZ level under the effective core potential approximation. The potential energy profile for some elementary reactions of hydroformylation catalyzed by Co-2(CO)(6)(PH3)(2), consisting of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination, are calculated, The transition states are further confirmed by having one and only one imaginary vibrational frequency, The activation energies of carbonyl insertion, H-2 oxidative addition and aldehyde reductive elimination are 54, 02, 134, 02 and 43. 44 kJ/mol, respectively.
Resumo:
Metallocene-catalyzed short chain branched polyethylene single crystals, formed from the melt at a higher crystallization temperature of 114 degreesC, were obtained. Highly elongated lamellae were formed, which are different from truncated lozenge or lenticular shaped single crystals formed at a lower crystallization temperature. It was found that there existed a definite line in the lamellae along the longitudinal growth direction and two regions were separated by the definite line. The lateral habits of both the regions were asymmetrical about the b-axis due to the chain tilting, which was the same as that at a lower crystallization temperature. Generally, the highly elongated lamellae were not straight, but curved towards the opposite direction with chain tilting direction due to a series of edge dislocation within a lamella. The inner side of a lamella was serrated and the outer side was smooth due to the lamellar curvature. The thickness of both regions of a lamella was different, the broader region was thicker than the narrower region, which was different from the uniform thickness of the lamellae formed at a lower crystallization temperature. The different thicknesses within a lamella were considered as the result of the initial thickness difference and the impact of isothermal thickening. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Incubated solutions containing glutathione (GSH) and alpha- or beta-cyclodextrins (CDs) were analyzed using electrospray mass spectrometry and tandem mass spectrometry, The results suggest that both CDs can catalyze oxidation of GSH to the oxidized glutathione (GSSG). The collision-induced dissociation (CID) of the 1:1 and 1:2 (CD/GSH) and 1:1 (CD/GSSG) complexes reveals the strong interactions of the CDs with the peptides tested. The 1:2 (CD/GSH) complex is considered to be the oxidation reaction intermediate, which indicates that the three-dimensional structure of the complexed two GSHs in CD complexes Is different from that of the proton-bound GSH dimer, The oxidation product, GSSG, Is also observed in the CID spectrum of the singly charged 1:1 (CD/GSH) complex, suggesting that a complex ion-complex ion reaction occurs by forming a doubly charged complex dimer, as a result of the ability of ion trap to accumulate and activate ions. The observations indicate that ion trap mass spectrometry can be used to explore cyclodextrin-catalyzed reactions and to carry out complex gaseous chemistry research. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The reaction of hydrogen peroxide with cytochrome c makes them coupled to lead to the hydroxylation of 4-nitrophenol. In situ electrochemical probe was used to detect the hydroxylation of 4-nitrophenol, which can avoid the tedious extraction procedure, the loss of the active species and the interference of some colored substances in the detection of 4-nitrocatechol by spectroscopic method. The hydroxyl radical scavengers mannitol and sodium benzoate did not eliminate hydroxylation, but the inhibitory effect of uric acid on the hydroxylation lead to the formation of the ferryl species of the protein during the reaction. These studies suggest that the electrochemical probe might efficiently detect the trace 4-nitrocatechol from the onset of the hydroxylation reaction and thus provides a more sensitive tool.
Resumo:
Hydrotalcite-like compounds (HTLcs): (CuMAlCO3)-Al-II-HTLcs, where M-II=Co2+, Ni2+, Cu2+, Zn2+ and Fe2+, were synthesized by coprecipitation and characterized with XRD and IR. The catalysis of these HTLcs was studied in the phenol hydroxylation by H2O2 in liquid phase; then the effects of the ratio of Cu/Al, reaction temperature, solvent and pH of medium were investigated. It has been found that the uncalcined HTLcs have higher activities than those of calcined samples in this reaction. The catalyst CuAlCO3-HTLcs having Cu/Al=3 efficiently oxidized phenol and gave high yields of the corresponding diphenols in appropriate reaction conditions. A tentative reaction mechanism is also proposed. (C) 1998 Elsevier Science B.V.
Resumo:
Copper-Aluminium Hydrotalcite-like compounds are synthesized by coprecipitation and characterized with XRD and IR. Catalysis of the above mentioned HTLcs are investigated in the phenol hydroxylation, good results are obtained. Meanwhile, the effects of the ratio of Cu/Al, reaction temperature, reaction medium and pH of reaction system are discussed, The reaction mechanism is also proposed.
Resumo:
Hydrotalcite-like compounds containing carbonate ion as the interlayer anion were prepared by coprecipitation under low supersaturation condition by mixing an aqueous solution of metal nitrates with an aqueous solutions of NaOH and Na2CO3, at room temperature, maintaining pH = 8-10 with vigorous stirring, Following the mixing, the resulting heavy slurry was aged at 353 K for 18 h with vigorous stirring, The precipitate was then filtered, washed several times with hot distilled water and dried in air at 353 K overnight, In this way, CuMI AlCO3-HTLcs and M-I AlCO3-HTLcs were synthesized and characterized by means of XRD and IR, The catalysis of the above mentioned HTLcs were investigated in the phenol hydroxylation with H2O2. The results indicated that all of the copper-containing HTLcs had a higher catalytic activity in the reaction, However, those catalysts that did not contain copper had no catalytic activity in this reaction, This means that copper was the active center in the phenol hydroxylation. Meanwhile, the mechanism was also proposed, which could be used to explain the main reason for higher activity for CuCuAlCO3-HTLcs in the phenol hydroxylation and the effect of Mg2+, Zn2+, Co2+, Ni2+ on activity of CuMI AlCO3-HTLcs.
Resumo:
Mixed oxides Ln(2)CuO(4+/-lambda)(Ln = La, Pr, Nd, Sm, Gd) with K2NiF4 structure were prepared. Their crystal structures were studied with XRD and IR spectra. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) were determined through chemical analyses. Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated. Results show that the catalysis of these mixed oxides has close relation with their structures and composition. Substitution of A site atom in Ln(2)CuO(4+/-lambda) has a great influence on their catalysis in the phenol hydroxylation.
Resumo:
To elucidate the mechanism of the catalyzed reaction of co-polyether (EO/THF) with N-100, the interaction and complex formation between reactants and catalysts were investigated by means of NMR spectroscopy. It is shown that the resonance peak of isocyanate carbon splits into two parts when the solutions of N-100 and co-polyether were mixed. The disappearing of proton resonance peak of hydroxyl group in NMR spectra when dibutyltin dilaurate(DBTDL) were added to the copolyether(THF/EO) solution indicates the complex formation, This interaction appears to be a bonding of tin to the oxygen of hydroxyl and make the hydrogen of the hydroxyl group very mobile and active, then exchange with other protons, In the case of triphenyl bismuth(TPB), the high field shift and intensity enhancement of proton peak were observed, which suggest a nucleophilic attack of the bismuth to the hydroxyl hydrogen.
Resumo:
beta, beta-1, 3-Piopylenedithio-alpha, beta-unsaturated arylketones 2 via chemoselective 1,2-addition with allyl or benzyl Grignard reagents afforded the corresponding carbinols 3 and 4. Catalysed by silica gel, the carbinols 3 and 4 were converted to the beta,gamma-unsaturated arylketones 5, 6. The mechanism and reaction condition were discussed.
Resumo:
Iron phenanthroline - and 8 - hydroxyquinoline complexes /Y zeolite, denoted a FePhen/Y and FeOx/Y respectively, were prepared; The formation of the metal complexes mentioned above within the cages of Y zeolite and their crystal structures were determined by elemental analyses, diffuse reflectance UV-Vis,SEM,BET,and XRD methods; The influence of experimental parameters upon phenol conversion and product selectivities were investigated as well.
Resumo:
The vapor phase esterification of acetic acid with ethanol and n-butanol catalyzed by SiW12 supported on activated carbon was studied in a flow fixed-bed reactor in the range of 358 to 433 K. The effects of the reaction temperature, liquid hourly space velocity (LHSV) as well as the molar ratio on the catalytic activity have been investigated. The kinetic studies showed that the rate of esterification was dependent on the partial pressures of the reactants and the addition of argon, an inert diluent in the system when the total pressure was kept at 1 atm. Also the alcohol structure has a profound effect on not only the rate of esterification, but also on the mechanism of esterification changing from a dual site mechanism for ethanol to a single site mechanism for n-butanol.