113 resultados para NERVE-FIBER LAYER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bucket Foundations under Dynamic Loadings The liquefaction deformation of sand layer around a bucket foundation is simulated under equivalent dynamic ice-induced loadings. A simplified numerical model is presented by taking the bucket-soil interaction into consideration. The development of vertical and horizontal liquefaction deformations are computed under equivalent dynamic ice-induced loadings. Firstly, the numerical model and results are proved to be reliable by comparing them with the centrifuge testing results. Secondly, the factors and the development characteristics of liquefaction deformation are analyzed. Finally, the following numerical simulation results are obtained: the liquefaction deformation of sand layer increases with the increase of loading amplitude and with the decrease of loading frequency and sand skeleton’s strength. The maximum vertical deformation is located on the sand layer surface and 1/4 times of the bucket’s height apart from the bucket’s side wall (loading boundary). The maximum horizontal deformation occurs at the loading boundary. When the dynamic loadings is applied for more than 5 hours, the vertical deformation on the sand layer surface reaches 3 times that at the bottom, and the horizontal deformation at 2.0 times of the bucket height apart from the loading boundary is 3.3% of which on the loading boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical investigation on the nonlinear pulse propagation and dispersive wave generation in the anomalous dispersion region of a microstructured fiber is presented. By simulating the dispersive wave generation under different conditions. it is found that the generation mechanism of the dispersive wave is mainly due to the pulse trapping across the zero-dispersion wavelength. By varying the initial pulse chirp, the output spectrum can be broadened and the intensity of the dispersive wave can be obviously enhanced. In particular, there exists an optimal positive chirp which maximizes the intensity of the dispersive wave. This effect can be explained by the energy transfer from the Raman soliton to the dispersive wave due to the effect of the pulse trapping and the effect of the higher-order dispersion. From the phase aspect, the explanation of this effect is also included. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acoustic-optics programmable dispersive filter (AOPDF) was first employed to actively control the linearly polarized femtosecond pump pulse frequency chirp for supercontinuum (SC) generation in a high birefringence photonic crystal fiber (PCF). By accurately controlling the second order phase distortion and polarization direction of incident pulses, the output SC spectrum can be tuned to various spectral energy distributions and bandwidths. The pump pulse energy and bandwidth are preserved in our experiment. It is found that SC with broader bandwidth can be generated with positive chirped pump pulses except when the chirp value is larger than the optimal value, and the same optimal value exists for the pump pulses polarized along the two principal axes. With optimal positive chirp, more than 78% of the pump energy can be transferred to below 750 nm. Otherwise, negative chirp will weaken the blue-shift broadening and the SC bandwidth. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pulse-compression scheme based on cascade of filamentation and hollow fiber has been demonstrated, Pulses with duration of sub-5 fs and energy of 0.2 mJ near 800 nm have been generated by compressing the similar to 40 fs pulses from a commercial laser system. This method is promising to generate near monocycle high energy pulses. [GRAPHICS] Measured autocorrelation curve of the final compressed pulses with duration of sub-5 fs (black solid) and the simulated autocorrelation curve of 4.6 fs pulse near 800 rim (red dash) (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA