235 resultados para Molecular biology|Genetics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identification of conserved genomic regions within and between different genomes is crucial when studying genome evolution. Here, we described regions of strong synteny conservation between vertebrate deuterostomes (tetrapods and teleosts) and invertebrat

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) has been identified and purified to homogeneity. It is a single chain glycoprotein with an apparent molecular weight of 33,000 and an isoelectric point of pH 5.2. It specifically activates plasminogen through an enzymatic reaction. The activation of human native GIu-plasminogen by TSV-PA is due to a single cleavage of the molecule at the peptide bond Arg(561)-Val-(562). Purified TSV-PA, which catalyzes the hydrolysis of several tripeptide p-nitroanilide substrates, does not activate nor degrade prothrombin, factor X, or protein C and does not clot fibrinogen nor show fibrino(geno)lytic activity in the absence of plasminogen. The activity of TSV-PA was readily inhibited by phenylmethanesulfonyl fluoride and by p-nitrophenyl-p-guanidinobenzoate. Oligonucleotide primers designed on the basis of the N-terminal and the internal peptide sequences of TSV-PA were used for the amplification of cDNA fragments by polymerase chain reaction. This allowed the cloning of a full-length cDNA encoding TSV-PA from a cDNA library prepared from the venom glands. The deduced complete amino acid sequence of TSV-PA indicates that the mature TSV-PA protein is composed of 234 amino acids and contains a single potential N-gIycosylation site at Asn(1G1). The sequence of TSV-PA exhibits a high degree of sequence identity with other snake venom proteases: 66% with the protein C activator from Aghistrodon contortrix contortrix venom, 63% with batroxobin, and 60% with the factor V activator from Russell's viper venom. On the other hand, TSV-PA shows only 21-23% sequence similarity with the catalytic domains of u-PA and t-PA. Furthermore, TSV-PA lacks the sequence site that has been demonstrated to be responsible for the interaction of t-PA (KHRR) and u-PA (RRHR) with plasminogen activator inhibitor type 1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The specific plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) is a serine proteinase presenting 23% sequence identity with the proteinase domain of tissue type plasminogen activator, and 63% with batroxobin, a fibrinogen clotting enzyme from Bothrops atrox venom that does not activate plasminogen. TSV-PA contains six disulfide bonds and has been successfully overexpressed in Escherichia coli (Zhang, Y., Wisner, A., Xiong, Y. L,, and Bon, C, (1995) J. Biol. Chem. 270, 10246-10255), To identify the functional domains of TSV-PA, we focused on three short peptide fragments of TSV-PA showing important sequence differences with batroxobin and other venom serine proteinases. Molecular modeling shows that these sequences are located in surface loop regions, one of which is next to the catalytic site, When these sequences were replaced in TSV-PA by the equivalent batroxobin residues none generated either fibrinogen-clotting or direct fibrinogenolytic activity, Two of the replacements had little effect in general and are not critical to the specificity of TSV-PA for plasminogen. Nevertheless, the third replacement, produced by the conversion of the sequence DDE 96a-98 to NVI, significantly increased the K-m for some tripeptide chromogenic substrates and resulted in undetectable plasminogen activation, indicating the key role that the sequence plays in substrate recognition by the enzyme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

,The molecular dynamics research of the core domain of p53 protein crystal structure shows that besides the stability in biochemistry this domain also shows a high stability in molecular mechanics. Based on that work, the residue R249 was substituted with amino acids Gly and Ser respectively, and molecular dynamics researches were performed separately. The results show that these substitutions cause a relax tendency between loop2 and 3 domains, leading to an alteration of the whole conformation of p53 core domain and ruining its stability. The results visually explains the mechanism of p53 changes in immunological and biochemical reactions, which are caused by 249 residue substitutions from 3-D structure variations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel L-amino acid oxidase, named TSV-LAO, has been purified and cloned from the snake Trimeresurus stejnegeri. Fifty percentage cytotoxic concentrations (CC50) of TSV-LAO on C8166 cells were 24 and 390 nM in the absence or presence of catalase (400nM), respectively. However, at concentrations that showed little effect on cell viability, TSV-LAO displayed dose dependent inhibition on HIV-1 infection and replication. The antiviral selectivity indexes (CC50/EC50) were 16 and 6, respectively, corresponding to the measurements of syncytium formation and HIV-1 p24 antigen expression. Interestingly, the presence of catalase resulted in an increase of its antiviral selectivity to 52 and 38. Under the same conditions, no anti-HIV-1 activity was observed by exogenous addition of H2O2. The complete amino acid sequence of TSV-LAO, as deduced from its cDNA, exhibits a high degree of sequence identity with other snake venom LAOs. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated evolutionary rates of the mitochondrial genome among individuals of Madoqua kirkii using the relative rate test. Our results demonstrate that individuals of two chromosome races, East African cytotype A and Southwest African cytotype D, evolve about 2.3 times faster than East African cytotype B. Cytogenetic changes, DNA repair efficiency, mutagens, and more likely, hitherto unrecognized factors will account for the rate difference we have observed. Our results suggest additional caution when using molecular clocks in the estimation of divergence time, even within lineages of closely related taxa. Rate heterogeneity in microevolutionary timescales represents a potentially important aspect of basic evolutionary processes and may provide additional insights into factors which affect genome evolution. (C) 1995 Academic Press, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sequences of the mitochondrial ND4 gene (1339 bp) and the ND4L gene (290 bp) were determined for all the 14 extant taxa of the Drosophila nasuta subgroup The average A + T content of ND4 genes is 76.5% and that of ND4L genes is 83.5%. A total of 114 variable sites were scored. The ND4 gene sequence divergence ranged from 0 to 5.4% within the subgroup. The substitution rate of the ND4 gene is about 1.25% per million years. The base substitution of the genesis strongly transition biased. Neighbor-joining and parsimony were used to construct a phylogeny based on the resultant sequence data set. According to these trees, five, distinct mtDNA clades can be identified. D. niveifrons represents the most diverged lineage. D, sulfurigaster bilimbata and D. kepulauana form two independent lineages. The other two clades are the kohkoa complex and the albomicans complex. The Kohkoa complex consists of D. sulfurigaster sulfurigaster, D. pulaua, D. kohkoa, and Taxon-F. The albomicans complex can be divided into two groups: D. nasuta, D. sulfurigaster neonasuta, D. sulfurigaster albostrigata, and D.. albomicans from Chiangmai form one group; and D. pallidifrons, Taxon-I, Taxon-J, and D. albomicans from China form the other group. High genetic differentiation was found among D. albomicans populations. Based on our phylogenetic results, we hypothesize that D. niveifrons diverged first from the D, nasuta subgroup in Papua New Guinea about 3.5 Mya. The ancestral population spread to the north and when it reached Borneo, it diversified sequentially into the kohkoa complex, D. s. bilimbata, and D. kepulauana. About 1 Mya, another radiation occurred when the ancestral populations reached the Indo-China Peninsula, forming the albomicans complex. Discrepancy between morphological groupings and phylogenetic results suggests that the male morphological traits may not be orthologous. (C) 1999 Academic Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, the region corresponding to the Thr-Gly region of the period (per) gene in the Drosophila nasuta subgroup of species was sequenced. The results showed, that this region was highly conserved in the D. nasuta subgroup. There were only nine variable sites found in this 300-bp-long region, all located in two small regions highly variable among Drosophila species. No length variation was observed either within this subgroup or in the Yunnan (YN) population of D. albomicans. The deduced amino acid sequences were identical for all 14 taxa in the D. nasuta subgroup, and a stretch of alternating Thr-Gly pairs was not observed in this subgroup. A phylogenetic tree was constructed. The clustering of some species was in general agreement with previous works, but it also raised some question on the phylogenetic relationship between the nasuta species. The data did not implicate the Thr-Gly region playing a role in behavioral isolation in this subgroup of Drosophila.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemokine receptor CCR5 can serve as a coreceptor for M-tropic HIV-1 infection and both M-tropic and T-tropic SIV infection. We sequenced the entire CCR5 gene from 10 nonhuman primates: Pongo pygmaeus, Hylobates leucogenys, Trachypithecus francoisi, Trachypithecus phayrei, Pygathrix nemaeus, Rhinopithecus roxellanae, Rhinopithecus bieti, Rhinopithecus avunculus, Macaca assamensis, and Macaca arctoides. When compared with CCR5 sequences from humans and other primates, our results demonstrate that:(1) nucleotide and amino acid sequences of CCR5 among primates are highly homologous, with variations slightly concentrated on the amino and carboxyl termini; and (2) site Asp13, which is critical for CD4-independent binding of SIV gp120 to Macaca mulatta CCR5, was also present in all other nonhuman primates tested here, suggesting that those nonhuman primate CCR5s might also bind SIV gp120 without the presence of CD4. The topologies of CCR5 gene trees constructed here conflict with the putative opinion that the snub-nosed langurs compose a monophyletic group, suggesting that the CCR5 gene may not be a good genetic marker for low-level phylogenetic analysis. The evolutionary rate of CCR5 was calculated, and our results suggest a slowdown in primates after they diverged from rodents. The synonymous mutation rate of CCR5 in primates is constant, about 1.1 x 10(-9) synonymous mutations per site per year. Comparisons of K-a and K-s suggest that the CCR5 genes have undergone negative or purifying selection. K-a/K-s ratios from cercopithecines and colobines are significantly different, implying that selective pressures have played different roles in the two lineages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microsatellites and mitochondrial DNA sequences were studied for the two subspecies of orangutans (Pongo pygmaeus), which are located in Borneo (P. p, pygmaeus) and Sumatra (P. p. abelii), respectively. Both subspecies possess marked genetic diversity. Ge

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have evaluated the molecular evolution of the chemokine receptor CCR5 in primates. The chemokine receptor CCR5 serves as a major co-receptor for human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) infection. Knowledge of evolution of the CCR5 molecule and selection on the CCR5 gene may shed light on its functional role. The comparison of differences between intraspecific polymorphisms and interspecific fixed substitutions provides useful information regarding modes of selection during the course of evolution. There is marked polymorphism in the CCR5 gene sequence within different primate species, whereas sequence divergence between different species is small. By using contingency tests, we compared synonymous (SS) and nonsynonymous (NS) CCR5 mutations occurring within and between a broad range of primates. Our results demonstrate that CCR5 evolution did not follow expectations, of strict neutrality at the level of the whole gene. The proportion of NS to SS at the intraspecific level was significantly higher than that observed at the interspecific level. These results suggest that most CCR5 NS polymorphisms are slightly deleterious. However, at domains more closely correlated with its known biological functions, there was no obvious evidence to support deviation from neutrality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the phylogenetic relationships among most Chinese species of lizards in the genus Phrynocephalus (118 individuals, collected from 56 populations of 14 well-defined species and several unidentified specimens) using four mitochondrial gene fragments (12S rRNA, 16S rRNA, cytochrome b, and ND4-tRNA(LEU)). The partition-homogeneity tests indicated that the combined dataset was homogeneous, and maximum-parsimony (MP), neighbor-joining (NJ), maximum-likelihood (ML) and Bayesian (BI) analyses were performed on this combined dataset (49 haplotypes including outgroups for 2058 bp in total). The maximum-parsimony analysis resulted in 24 equally parsimonious trees, and their strict consensus tree shows that there are two major clades representing the Chinese Phrynocephalus species: the viviparous group (Clade A) and the oviparous group (Clade B). The trees derived from Bayesian, ML. and NJ analyses were topologically identical to the MP analysis except for the position of P. mystaceus. All analyses left the nodes for the oviparous group, the most basal clade within the oviparous group, and P. mystaceus unresolved. The phylogenies further suggest that the monophyly of the viviparous species may have resulted from vicariance, while recent dispersal may have been important in generating the pattern of variation among the oviparous species. (C) 2003 Elsevier Science (USA). All rights reserved.