109 resultados para Maximum Principles
Resumo:
The concentration of suspended particulate matter (SPM), sedimentation flux, and various forms of phosphorus and silica in turbidity maximum zone (TMZ) in the Changjiang (Yangtze) estuary was studied. Based on the budget of P and Si, their mass balances in the TMZ were calculated. Results show that the variation in concentration of dissolved inorganic silicon (DISi) was mainly controlled by seawater dilution, while that of dissolved inorganic phosphor-us (DIP) was considerably affected by the buffering of suspended matter and sediment. Our experiments showed that the sedimentation fluxes of SPM and particulate inorganic phosphorus (PIP), total particulate phosphorus (TPP), particulate inorganic silicon (PISi), and biological silicon (BSi) in the TMZ were 238.4 g m(-2) d(-1) and 28.3, 43.1, 79.0, 63.0 mg m(-2) d(-1), respectively. In addition, a simple method to estimate the ratio of resuspension of sediment in the TMZ was established, with which the rate in surface and bottom waters of the TMZ accounted for 55.7 and 66.1% of the total SPM, respectively, indicating that the sediment resuspension in the TMZ influenced significantly the mass balances of P and Si. Particulate adsorbed P (60.8%) and 35.5% of total particulate P discharged from the river were filtered and then deposited in the TMZ. The input flux of PIP from the river mouth was 55.9% of that of DIP, being important as biologically available P, while that of PISi was only 3.5% of DISi, showing that particulate adsorbed Si was much less important than particulate adsorbed P. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
文章讲述了交通监控系统中应用视频图像流来跟踪运动目标并对目标进行分类的具体过程和原则.基于目标检测提出了双差分的目标检测算法,目标分类应用到了连续时间限制和最大可能性估计的原则,目标跟踪则结合检测到的运动目标图像和当前模板进行相关匹配.实验结果表明,该过程能够很好地探测和分类目标,去除背景信息的干扰,并能够在运动目标部分被遮挡、外观改变和运动停止等情况下连续地跟踪目标.
Resumo:
The large ancient underground rock caverns in Longyou is an important component of grotto cultural. Current task facing the long-term preservation of these unmovable cultural relics is arduous and challenging. The deformation failure of the caverns' surrounding rock is deteriorating. The weathering velocity of these caverns is accelerating. With the strength of caverns' surrounding rock worsening, critical rocks were generated in local regions of the caverns' vault and posing a threat to the security of people passing by. Selection of a maximum-security route and construction a aisle in the caverns might be an efficient way to ensure the security of tourists and reach the target of long-term preservation. The deformation and destruction of the ancient underground caverns is primarily dominated by geological conditions and the special structure of caverns. Based on field investigation, several fundamental conditions for deformation and failure are recognized, and nine deformation and fracture patterns of the Longyou grotto are proposed. In order to judge the stability of caverns’ surrounding rock, the element safety coefficient method is presented. An explicit explanation for the meaning of the method is deduced using Mohr-Coulomb strength criterion. Numerical analyses are carried out in the dissertation through FLAC3D code. Through numerical analysis, the stress distribution regularities of the caverns’ roofs, piles and public side wall are analysed, and the stability properties of caverns’ surrounding rock are also assessed. At the same time, the element safety coefficient method is introduced to contrast the stability degree of different regions in caverns. The above analyses are bases for choosing the optimal tourism routes in the caverns of Longyou grotto. The impact of surface load on the stability of shallow buried cavities in Longyou grotto is evaluated, the results show that building load has significant influence on the stability of the No.1 cavern’s roof, pile and public side wall between the No.1 cavern and the No.2 cavern, pedestrian load has less impact on the stability of surrounding rock than building load. The principles for choosing the optimal tourism routes in the caverns are discussed. With these principles, the dissertation makes a systematic research on the geological analytic method, numerical analytic method and meeting tourism requirements method, which are used in selecting the optimal tourism routes in the caverns. In order to achieve the best effect in the process of tourism routes selection, the above three method are integrated through Theory of Engineering Geomechanics Meta-system(EGMS). According to field investigations, numerical analyses, tourism requirements and expert experiences, the optimal tourism routes through No.1 to No.5 cavern are determined preliminarily. The obtained results from the research work are useful for the security aisle's construction, they also have reference value to other projects in practice.