259 resultados para Marangoni convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

提出了一种新模型来研究由单一物质构成的液层在其纯蒸气中的蒸发.液层置于微重力环境中并且受到水平方向温度梯度的作用,液层的热毛细对流和蒸发耦合在一起,使得气液界面的传热传质规律更加复杂.用理论分析的方法求解了不考虑热毛细效应的纯蒸发模型,得出温度场分布和界面质量流量的解析表达式.对于热毛细对流和蒸发耦合情况,采用有限差分的投影算法同时求解Navier-Stokes方程和能量方程,得到了不同蒸发Blot数和Marangoni数下流场和温度场的稳态数值解.论述了蒸发Biot数和Marangoni数对界面传热传质的影响,提出并解释了蒸发和热毛细对流耦合的三种模式.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

综述了蒸发液层稳定性理论分析和蒸发对流实验研究方面的最新进展.首先回顾历史上经典的单层流Marangoni不稳定性分析.利用经典的单层流模型可以很好解释无蒸发液层的稳定性特性,但是由于经典的单层流模型没有考虑蒸汽层与液层之间的动力学耦合关系,所以不能完全解释蒸发液层的Marangoni不稳定性特性.有的学者建立了考虑蒸汽层与液层的热耦合与动力学耦合关系的两层流模型,并采用了界面温度连续这样的假设.而在实验的观测中,蒸发界面处的温度是不连续的,特别是在蒸发量比较大的情况下,汽/液界面处温度跳跃很明显.由于界面温度连续假设在处于非平衡状态的系统中是不成立的,所以这些模型虽然能给出一些新的有关系统稳定性的特性,但还是不能完全解释蒸发液层的Marangoni不稳定性的特性,特别是为什么从底部冷却液层的时候,在实验中仍然能够观察到Marangoni对流涡胞的出现的原因.本文总结了前人的研究成果,同时给出了蒸发系统的动力学建模过程和实验研究方法,并对各种模型的稳定性特性进行了总结.最后,指出了现有理论中存在的问题和有待进一步研究的问题.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

理论研究了纵向非均匀多孔介质中流体表面张力驱动的对流不稳定性、充满液体的多孔介质层从下方加热,上方自由表面冷却,形成可引起多孔介质液层Marangoni—Benard对流流动的纵向温度梯度.采用线性化的Brinkman.Forchheimier方程作为控制方程组,对孔隙率分别为线性函数、正弦三角函数分布的非均匀多孔介质液层的Marangoni—Benard问题进行了线性稳定性分析、通过采用Chebyshev-Tau谱方法求解广义特征值问题,得到了系统临界Marangoni数随无量纲波数变化的中性稳定性曲线,分析和比较了孔隙率的变化对液层对流稳定性和流场结构的影响,获得了纵向非均匀多孔介质液层不稳定性现象的新特征.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical diagnostic system consisting of Michelson interferometer with image processor has been developed for study of the kinetics of thermal capillary convection and buoyancy convection. This optical interferometer has been used to observe and measure surface deformation and surface wave of capillary convection and buoyancy convection in a rectangular cavity with different temperature’s sidewalls. Fourier transformation is used to image processing. The quantitative results of surface deformation and surface wave have been calculated from the interference fringe pattern. With the increasing of temperature gradient, the liquid surface slant gradually. It’s deformation has been calculated, which is related directly with temperature gradient. This is one of the characters introducing convection. Another interesting phenomenon is the inclining direction, which is different when the liquid layer is thin or thick. When the liquid layer is thin, convection is mainly controlled by thermocapillary effect. However, When the liquid layer is thick, convection is mainly controlled by buoyancy effect. Surface deformation in the present experiment are more and more declining in this process. The present experiment proved that surface deformation appears before the appearance of surface wave on fluid convection, it is related with temperature gradient, and the height of liquid layer, and lies on capillary convection and buoyancy convection. The present experiment also demonstrates that the amplitude of surface wave of thermocapillary-buoyancy convection is much smaller than surface deformation, the wave is covered by deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present research work, the thermal capillary convection has been investigated and measured by particle image velocimetry (PIV) technique. There is one liquid layer in a rectangular cavity with different temperature’s sidewalls. The cavity is 52mm,42mm,20mm, 4mm in height of the silicon oil liquid layer. A sidewall of the cavity is heated by electro-thermal film, another sidewall is cooled by the semiconductor cooling sheet. The velocity field and the stream lines in cross section in liquid layer have been obtained at different temperature difference. The present experiment demonstrates that the pattern of the convection mainly relates with temperature difference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for studying of the surface wave in the thermal capillary convection in a rectangular cavity. In this paper, the capillary convection, surface deformation and surface wave due to the different temperature between the two sidewalls have been investigated. The cavity is 52mm?42mm in horizontal cross section and 4mm in height. The temperature difference is increased gradually and flow in liquid layer will change from steady convection to unstable convection. The optical interference method measures the surface deformation and the surface wave of the convection. The deformation of the interference fringes, which produced by the meeting of the reflected light from the liquid surface and the reference light has been captured, and the surface deformation appears when the steady convection is developed. The surface deformation is enhanced with the increasing of the temperature difference, and then several knaggy peeks in the interference fringes appear and move from the heated side to the cooled side, it demonstrates that the surface wave is existed. The surface deformation, the wavelength, the frequency, and the wave amplitude of the surface wave have been calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Onset and evolution of the Rayleigh-Benard (R-B) convection are investigated using the Information Preservation (IP) method. The information velocity and temperature are updated using the Octant Flux Splitting (OFS) model developed by Masters & Ye based on the Maxwell transport equation suggested by Sun & Boyd. Statistical noise inherent in particle approaches such as the direct simulation Monte Carlo (DSMC) method is effectively reduced by the IP method, and therefore the evolutions from an initial quiescent fluid to a final steady state are shown clearly. An interesting phenomenon is observed: when the Rayleigh number (Ra) exceeds its critical value, there exists an obvious incubation stage. During the incubation stage, the vortex structure clearly appears and evolves, whereas the Nusselt number (Nu) of the lower plate is close to unity. After the incubation stage, the vortex velocity and Nu rapidly increase, and the flow field quickly reaches a steady, convective state. A relation of Nu to Ra given by IP agrees with those given by DSMC, the classical theory and experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The environment temperature has inevitable effects on property of the convect ion-based tilt sensors. It not only redefines the application, but also prevents the improvement of the sensor performance. Numerical simulation of the fluid flow in the chamber of a sensor was performed and the influence of the environment temperature was studied in this paper. At zero tilt angle, the temperature distribution along the perpendicular line cross the heat source at various environment temperatures was presented. It was found that the flow varied dramatically at different environment temperatures, which would cause the output signal vary accordingly, even when the tilt angle was kept at a constant, because this device works by sensing the change of flow. At the same condition, we present the numerical results when the temperature difference across the heat source and the environment was kept at the same, in those results, it was found that the temperature difference at every point along the perpendicular line cross the heat source keep the same, this result confirms the similarity principle of nature convection. Second, A method of eliminating environment temperature infect on property of convect ion-based tilt sensor, which is based on the theory of flow similarity, is proposed. It was found that a thermal transistance can be piped on the circuit of heat source to compensate the temperature of the heat source. A compensative circuit was specially designed which can keep flow similarity by changing heat source temperature in order to eliminate the influence of environment temperature. The experiment results show that above 70% temperature drift can be eliminated by this compensative circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.

目录

1. models of floating zone convection
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
.references
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: