192 resultados para MV PHOTONS
Resumo:
We report a measurement of high-p(T) inclusive pi(0), eta, and direct photon production in p + p and d + Au collisions at root s(NN) = 200 GeV at midrapidity (0 < eta < 1). Photons from the decay pi(0) -> gamma gamma were detected in the barrel electromagnetic calorimeter of the STAR experiment at the Relativistic Heavy Ion Collider. The eta -> gamma gamma decay was also observed and constituted the first eta measurement by STAR. The first direct photon cross-section measurement by STAR is also presented; the signal was extracted statistically by subtracting the pi(0), eta, and omega(782) decay background from the inclusive photon distribution observed in the calorimeter. The analysis is described in detail, and the results are found to be in good agreement with earlier measurements and with next-to-leading-order perturbative QCD calculations.
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Little is known about the effects of space radiation on the human body. There are a number of potential chronic and acute effects, and one major target for noncarcinogenic effects is the human vasculature. Cellular stress, inflammatory response, and other radiation effects on endothelial cells may affect vascular function. This study was aimed at understanding the effects of space ionizing radiation on the formation and maintenance of capillary-like blood vessels. We used a 3D human vessel model created with human endothelial cells in a gel matrix to assess the effects of low-LET protons and high-LET iron ions. Iron ions were more damaging and caused significant reduction in the length of intact vessels in both developing and mature vessels at a dose of 80 cGy. Protons had no effect on mature vessels up to a dose of 3.2 Gy but did inhibit vessel formation at 80 cGy. Comparison with gamma radiation showed that photons had even less effect, although, as with protons, developing vessels were more sensitive. Apoptosis assays showed that inhibition of vessel development or deterioration of mature vessels was not due to cell death by apoptosis even in the case of iron ions. These are the first data to show the effects of radiation with varying linear energy transfer on a human vessel model. (C) 2011 In Radiation Research Society
Resumo:
In an attempt to ascertain the rate-determining steps (RDS) of TiO2 photoelectrocatalytic (PEC) reaction, the PEC oxidation of sulfosalicylic acid (SSA) solution in a TiO2-coated electrode reactor system was monitored by applying the electrochemical impedance spectroscopy (EIS) method. In the meantime, an EIS mathematical model was first established to theoretically simulate the PEC reaction. Based on the EIS model, the theoretical simulation indicates three typical reactions in a PEC oxidation process, which include the charge-transfer-dominated reaction, both the charge-transfer- and adsorption-dominated reaction, and the adsorption-dominated reaction. The experimental results of EIS measurement showed that there was only one arc/semicircle on the EIS plane display when the external bias applied was below 200 mV (vs SCE) in the SSA PEC degradation whereas there were two arcs/semicircles when the externally applied bias exceeded 200 mV (vs SCE). The experimental results have a good agreement with the model simulation. The EIS method in this study provides an easier way to determine the RDS in a PEC oxidation process, which would be helpful to better control the reaction in practice.
Resumo:
In this paper, a poly(vinyl chloride) (PVC) membrane electrode is prepared for gemfibrozil, 2, 2-dimethyl-5(2,5-xylyloxy) valeric acid, based on its ion pair complexes with hexadecyltrioctyl ammonium iodide (HTOA). The membrane composition of the electrode was optimized by using the sequential level elimination method for orthogonal experimental design. The electrode has a Nernstian response range from 2.5 X 10(-5) to 0.1 mol/l with an average slope of 55.3 mV/decade. The limit of detection is 7.1 X 10(-6) mol/l. The electrode responses were not affected by pH in the range 10.0-12.3. A Na2B4O7-Na2CO3 buffer of pH = 11.0 was selected as the background electrolyte solution for potentiometric measurements. The electrode was used for determining gemfibrozil in pharmaceutical preparations with satisfactory results.
Resumo:
A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0×10-6-1.0×10-1 M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3 - 5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.
Resumo:
PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.
Resumo:
It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.
Resumo:
It is discovered that SBA-15 (santa barbara amorphous) can provide the favorable microenvironments and optimal direct electron-transfer tunnels (DETT) of immobilizing cytochrome c (Cyt c) by the preferred orientation on it. A high-redox potential (254 mV vs. Ag/AgCl) was obtained on glassy carbon (GC) electrode modified by immobilizing Cyt c on rod-like SBA-15. With ultraviolet-visible (UV-vis), circular dichroism (CD), FTIR and cyclic voltammetry, it was demonstrated that immobilization made Cyt c exhibits stable and ideal electrochemical characteristics while the biological activity of immobilized Cyt c is retained as usual.
Resumo:
Single-walled carbon nanohorn modified glassy carbon electrode (SWCNH-modified GCE) was first employed for the simultaneous determination of uric acid (UA), dopamine (DA), and ascorbic acid (AA). The SWCNH-modified GCE displayed excellent electrochemical catalytic activities. The oxidation overpotentials of UA, DA, and AA decrease significantly and their oxidation peak currents increase dramatically at SWCNH-modified GCE. Linear sweep voltammetry (LSV) was used for the simultaneous determination of UA, DA, and AA in their ternary mixture. The peak separations between UA and DA, and DA and AA are large up to 152 mV and 221 mV, respectively.
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.
Resumo:
利用羧基同导电聚苯胺(cPANI)主链上的氮原子的相互作用,制备了静电作用型水基导电聚苯胺/二氧化硅杂化材料,研究了杂化材料涂层对冷轧钢板的防腐性能.在3.5%NaCl中,含11 wt%cPANI的杂化材料涂层的腐蚀电位比纯二氧化硅涂层正移了200 mV,腐蚀电流从13.4μA降到2.4μA,下降了5倍,表明含cPANI的静电作用型杂化涂料使冷轧钢板表面变得更惰性.阻抗分析结果表明,cPANI含量为11 wt%的静电作用型杂化材料的阻抗比纯无机二氧化硅涂层大一个数量级,而且在碱性介质中浸泡10天后,杂化材料涂层的阻抗仍然保持稳定,而纯无机二氧化硅涂层的阻抗比初始值下降了一个数量级.杂化材料的形态分析结果表明,cPANI在静电作用型cPANI/二氧化硅杂化材料中的分布比在普通cPANI/二氧化硅杂化材料中更加均匀一致,从而使得它比普通的cPANI/二氧化硅杂化材料具有更好的防腐效果.
Resumo:
A smart biodegradable cationic polymer (CBA-PEI) based on the disulfide bond-containing cross-linker cystamine bisacrylamide (CBA) and low molecular weight branched polyethylenimine (1800-Da, PEI1800) was successfully synthesized by Michael addition reaction in our recent study. Furthermore, a series of copolymers (CBA-PEI-PEG) with different PEGylation degree were obtained by the mPEG-SPA (5000-Da) reacting with CBA-PEI at various weight ratios directly. The molecular structures of the resulting polymers CBA-PEI and CBA-PEI-PEG were evaluated by nuclear magnetic resonance spectroscopy (H-1-NMR) and capillary viscosity measurements, all of which had successfully verified formation of the copolymers. The polymer/DNA complexes based on CBA-PEI and CBA-PEI-PEG were measured by dynamic light scattering and gel retardation assay. The results showed that the particle size and zeta potential of complexes were reduced with increasing amount of PEG grafting, even no particle formation. The particle size of CBA-PEI/DNA complexes was in range of 103.1 to 129.1 nm, and the zeta potential was in range of 14.2 to 24.3 mV above the 2:1 weight ratio. In the same measure condition, the particle size of CBA-PEI-PEG complexes was reduced to a range of 32.2 to 55 nm, and the zeta potential was in range of 9.3 to 13.8 mV at the 2:1 weight ratio.
Resumo:
制备了TiO2-CuO修饰Cu电极,并对CO2在该复合光电电极上的还原行为进行了研究。光电化学测试表明,TiO2有助于电极的光电转换,能注入更多的电子促进CO2还原。TiO2-CuO/Cu复合电极在光照条件下对CO2具有很好的光电催化还原活性,使还原电位正移约100 mV,同时有效地抑制了水的光电分解。Mott-Schottky曲线测定表明,TiO2-CuO/Cu复合电极具有n型半导体性质,其平带电位随光照时间的增加而负移。光谱及色质谱测试证明,CO2在TiO2-CuO/Cu复合电极上的光电化学还原产物为甲酸和甲醛,还有少量乙烯和甲烷。在-1.2 V条件下光照3 h,CO2的转化率可达32%。基于实验结果对CO2光电还原机理进行了推断。
Resumo:
Effective enhancement of electrochermluminescence (ECL) of peroxydisulfate on a C-60/didodecyldimethyl ammonium bromide (C-60/DDAB) film coated glassy carbon electrode (GCE) surface is reported in this paper. The C60/DDAB film gave lower cathodic current in the presence of peroxydisulfate than that from a bare GCE. To our surprise, electrochemiluminescent intensity from peroxydisulfate reduction was effectively enhanced on the C60/DDAB film, which was 50 times and 250 times higher than those from a DDAB film coated and bare GCE, respectively. Moreover, the ECL onset potential on the C60/DDAB film was about -0.9 V, which positively shifted 200 mV compared with that from the bare GCE. Dissolved oxygen and the applied potential also affected the electrochemiluminescent intensity. The presence of oxygen decreased the intensity, and the intensity reached maximum at the applied potential of -1.7 V. The unique property will greatly enrich ECL studies and applications based on fullerenes.