324 resultados para MULTIDISCIPLINARY
Resumo:
Seven sets of protein target sites, which occur in several gene promoters, have been analyzed. The results suggest that there is a possible mode of specific recognition of double-helical nucleic acids by proteins, This recognition mode is related to a spe
Resumo:
In order to understand the behavior of RNAs with large bulges In solution, molecular dynamics was performed on the RNA molecule in water with A6 bulge. The result of simulation showed that nonstacked conformation Is the main conformation in large bulges, and the backbone of large bulge is of great conformational flexibility, but bulges-induced bends are relatively rigid. The fluctuation in bulge has little influence on the bend angle of RNAs.
Resumo:
The theoretical model construction of mRNA hairpin structure and single-stranded structure as well as the simulation studies on RNA structure determined by the X-ray crystal diffraction and nuclear magnetic resonance revealed that in translation, after mRNA being unfolded into single-stranded structure, its topological configuration was closely correlative with the original hairpin structure. The conformational features of single-stranded mRNA appeared as helical regions alternating with curly regions to different extents, which might exert the influence on the folding of nascent polypeptide by various regulating effects including different translational rates.
Resumo:
Peptide nucleic acids (PNAs) are nucleic acid analogs with the deoxyribose phosphate backbone replaced by pseudo-peptide polymers to which the nucleobases are linked. The achiral, uncharged and rather flexible properties of the peptide backbone permit peptide nucleic acids more potential than oligonucleotides in application to antisence and antigenic reagents. The process of PNA binding to DNA duplex and forming triplex is the first step of PNA interacting with PNA. But there are no PNA.2DNA triplex crystal data up to date and little has been reported on the structure features and the force of the PNA.2DNA triplex. In this work, PNA(T).DNA(AT) triplexes are successfully built and the structures and forces to stabilize the triplex after optimizations and molecule dynamics are systematically examined, which are expected to aid in the application of PNAs as anticense and antigene agents.
Resumo:
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.
Resumo:
RNA hairpins containing UNCG, GNRA, CUUG (N = A, U, C or G, R = G or A) loops are unusually thermodynamic stable and conserved structures. The structural features of these hairpin loops are very special, and they play very important roles in vivo. They are prevalent in rRNA, catalytic RNA and non-coding mRNA. However, the 5' C(UUCG)G 3' hairpin is not found in the folding structure of 88 human mRNA coding regions. It is also different from rRNA in that there is no preference for certain sequences among tetraloops in these 88 mRNA folding structures.
Resumo:
Molecular phylogeny of three genera containing nine species and subspecies of the specialized schizothoracine fishes are investigated based on the complete nucleotide sequence of mitochondrial cytochrome b gene. Meantime relationships between the main cladogenetic events of the specialized schizothoracine fishes and the stepwise uplift of the Qinghai-Tibetan Plateau are also conducted using the molecular clock, which is calibrated by geological isolated events between the upper reaches of the Yellow River and the Qinghai Lake. Results indicated that the specialized schizothoracine fishes are not a monophyly. Five species and subspecies of Ptychobarbus form a monophyly. But three species of Gymnodiptychus do not form a monophyly. Gd. integrigymnatus is a sister taxon of the highly specialized schizothoracine fishes while Gd. pachycheilus has a close relation with Gd. dybowskii, and both of them are as a sister group of Diptychus maculatus. The specialized schizothoracines fishes might have originated during the Miocene (about 10 MaBP), and then the divergence of three genera happened during late Miocene (about 8 MaBP). Their main specialization occurred during the late Pliocene and Pleistocene (3.54-0.42 MaBP). The main cladogenetic events of the specialized schizothoracine fishes are mostly correlated with the geological tectonic events and intensive climate shift happened at 8, 3.6, 2.5 and 1.7 MaBP of the late Cenozoic. Molecular clock data do not support the hypothesis that the Qinghai-Tibetan Plateau uplifted to near present or even higher elevations during the Oligocene or Miocene, and neither in agreement with the view that the plateau uplifting reached only to an altitude of 2000 in during the late Pliocene (about 2.6 MaBP).
Resumo:
Wistar rats, treated with the GABA(A) receptor agonist muscimol, were used to investigate the role of the hippocampal-prelimbic cortical (Hip-PLC) circuit in spatial learning in the Morris water maze task, and in passive avoidance learning in the step-thr
Cooperation of Mtmr8 with PI3K Regulates Actin Filament Modeling and Muscle Development in Zebrafish
Resumo:
Background: It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. Methodology/Principal Findings: Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. Conclusion/Significance: The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.
Resumo:
Gene duplication is thought to provide raw material for functional divergence and innovation. Fish-specific dmrt2b has been identified as a duplicated gene of the dmrt2a/terra in fish genomes, but its function has remained unclear. Here we reveal that Dmrt2b knockdown zebrafish embryos display a downward tail curvature and have U-shaped somites. Then, we demonstrate that Dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway, because Dmrt2b knockdown reduces target gene expression of Hedgehog signaling, and also impairs slow muscle development and neural tube patterning through Hedgehog signaling. Moreover, the Dmrt2b morphants display defects in heart and visceral organ asymmetry, and, some lateral-plate mesoderm (LPM) markers expressed in left side are randomized. Together, these data indicate that fish-specific duplicated dmrt2b contributes to a divergent function in somitogenesis through Hedgehog pathway and maintains the common function for left-right asymmetry establishment.
Resumo:
In Synechocystis sp. PCC 6803, gene sll1384 encodes a protein with a DnaJ domain at its N-terminal portion and a TPR domain at the C-terminal portion. An sll1384 mutant shows no difference from the wild type in adaptation to different temperatures, but almost completely loses its capability of phototactic movement. After complementation with sll1384, the mutant regains the phototaxis. As shown with electron microscopy, on the cell surface, mutant cells have pili that appear to be the same as that of the wild type. Also, the transformation efficiency remains unchanged in the mutant. It is postulated that Sll1384 regulates phototaxis of Synechocystis through protein-protein interaction. It is the first DnaJ-like protein gene identified in a cyanobacterium for a role in phototaxis.
Resumo:
This study has developed an improved subjective approach of classification in conjunction with Step wise DFA analysis to discriminate Chinese sturgeon signals from other targets. The results showed that all together 25 Chinese sturgeon echo-signals were detected in the spawning ground of Gezhouba Dam during the last 3 years, and the identification accuracy reached 90.9%. In Stepwise DFA, 24 out of 67 variables were applied in discrimination and identification. PCA combined with DFA was then used to ensure the significance of the 24 variables and detailed the identification pattern. The results indicated that we can discriminate Chinese sturgeon from other fish species and noise using certain descriptors such as the behaviour variables, echo characteristics and acoustic cross-section characteristics. However, identification of Chinese sturgeon from sediments is more difficult and needs a total of 24 variables. This is due to the limited knowledge about the acoustic-scattering properties of the substrate regions. Based on identified Chinese sturgeon individuals, 18 individuals were distributed in the region between the site of Gezhouba Dam and Miaozui reach, with a surface area of about 3.4 km(2). Seven individuals were distributed in the region between Miaozui and Yanshouba reach, with a surface area of about 13 km(2).
Resumo:
Iron deficiency can induce cyanobacteria to synthesize siderophore receptor proteins on the outer membrane to enhance the uptake of iron. In this study, an outer membrane of high purity was prepared from Anabaena sp. PCC 7120 based on aqueous polymer two-phase partitioning and discontinuous sucrose density ultra-centrifugation, and the induction of outer membrane proteins by iron deficiency was investigated using 2-D gel electrophoresis. At least. five outer membrane proteins were newly synthesized or significantly up-regulated in cells transferred to iron-deficient conditions, which were all identified to be siderophore receptor proteins according to MALDI-TOF-MS analyses. Bacterial luciferase reporter genes luxAB were employed to monitor the transcription of the encoding genes. The genes were induced by iron deficiency at the transcriptional level in different responsive modes. Luciferase activity expressed from an iron-regulated promoter may be used as a bioreporter for utilizable iron in natural water samples. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Gibel carp ( Carassius auratus gibelio) is a uniquely gynogenetic species with a minor ratio of males in natural habitats, but its male origin and sex determination mechanisms have been unknown. In this study, a male-biased mutant family was discovered from the gynogenetic gibel carp, and a male-specific SCAR marker was identified from the mutant family. Normal spermatogenesis was observed in the male testes by immuno. fluorescence histochemistry. Nearly identical AFLP profiles were observed between males and females, but a male-specific 86 bp AFLP fragment was screened by sex-pool bulked segregant analysis and individual screening. Based on the male-specific AFLP fragment, a total of 579 bp sequences were cloned by genome walking. Subsequently, a male-specific SCAR marker was designed, and the male-specific DNA fragment was confirmed to be steadily transmitted to the next generation and consistently detected only in males. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.