198 resultados para Landau Level
Resumo:
中国计算机学会
Resumo:
We study the four-wave mixing (FWM) in an opening five-level system with two dressing fields. There are three kinds of doubly dressing mechanisms (parallel cascade, sequential cascade, and nested cascade) in the system for doubly dressed four-wave mixing. These mechanisms reflect different correlations between two dressing fields and different effects of two dressing fields to the FWM. Investigation of these mechanisms is helpful to understand the generated high-order nonlinear optical signal dressed by multi-fields.
Resumo:
Based on the phase-conjugate polarization interference between two two-photon processes, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the four-level attosecond sum-frequency polarization beat (FASPB) in the extremely Doppler-broadened limit. The homodyne-detected FASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. The different roles of the amplitude fluctuations and the phase fluctuations can be understood physically in the time-domain picture. The field correlation has a weak influence on the FASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the FASPB signal shows resonant-nonresonant cross-correlation, and drastic difference for three Markovian stochastic fields. The maxima of the two two-photon signals are shifted from zero time delay to the opposite direction, and the signal exhibits damping oscillation when the laser frequency is off-resonant from the two-photon transition. A Doppler-free precision in the measurement of the energy-level sum can be achieved with an arbitrary bandwidth. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels.
Resumo:
We have investigated the dressed effects of non-degenerate four-wave mixing (NDFWM) and demonstrated a phase-sensitive method of studying the fifth-order nonlinear susceptibility due to atomic coherence in RN-type four-level system. In the presence of a strong coupling field, NDFWM spectrum exhibits Autler-Townes splitting, accompanied by either suppression or enhancement of the NDFWM signal, which is directly related to the competition between the absorption and dispersion contributions. The heterodyne-detected nonlinear absorption and dispersion of six-wave mixing signal in the RN-type system show that the hybrid radiation-matter detuning damping oscillation is in the THz range and can be controlled and modified through the colour-locked correlation of twin noisy fields.
Resumo:
The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and suppression of wave mixing signal, are obtained analytically. Meanwhile, an electromagnetic induced transparency of multi-wave mixing is presented, which shows multiple peaks and asymmetric effects caused by one-photon, two-photon and three-photon resonances, separately. The slow light propagation multiple region of multi-wave mixing signal is also obtained.