231 resultados para ISOTACTIC-POLYPROPYLENE
Resumo:
Noncompatibilized and compatibilized blends of nylon 1010/PP blends having five different viscosity ratios were prepared by melt extrusion. Glycidyl methacrylate-grafted-polypropylene (PP-g-GMA) was used as the compatibilizer to enbance the adhesion between the two polymers and to stabilize the blend morphology. The effect of the viscosity ratio on the morphology of nylon 1010/polypropylene blends was investigated, with primary attention to the phase-inversion behavior and the average particle size of the dispersed phase. The relationship between the mechanical properties and the phase-inversion composition was investigated as well. Investigation of the morphology of the blends by microscopy indicated that the smaller the viscosity ratio (eta(PP)/eta(PA)) the smaller was the polypropylene concentration at which the phase inversion took place and polypropylene became the continuous phase. The compatibilizer induced a sharp reduction of particle size, but did not have a major effect on the phase-inversion point. An improvement :in the mechanical properties was found when nylon 1010 provided the matrix phase. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The rheological properties and crystallization characteristics of low ethylene content poly propylene (EPM) with and without Yittrium oxide (Y2O3) as a filler was investigated by cone-plate viscometer and differential scanning calorimetry. Yittrium oxide had a profound effect on the viscosities of the systems. To determine the nonisothermal crystallization rate of the materials, a new estimation method was used. From the results, we can conclude that Y2O3 acts as a nucleating agent, which increased the crystallization rate of the EPM. (C) 1996 John Wiley & Sons, Inc.
Resumo:
For recycling of waste polymers, the degradation behavior of PP was studied with a combination of radiolysis and thermolysis methods. The results revealed that thermal degradation temperature of PP was significantly reduced when PP was irradiated in the presence of a zeolite. The irradiation-induced temperature reduction depended on the zeolite structure and composition, as well as on the morphology of the mixture. Identification of pyrolysis products indicated that, in the absence of zeolite, irradiation resulted only in a change of the product distribution but no formation of new compounds. In the presence of zeolite, however, a series of oxidized products were formed. In addition, the pyrolysis could be performed at a much lower temperature. (C) 1996 Elsevier Science Limited
Resumo:
With the intention of understanding chemical recycling of waste polymers, various kinds of zeolites were used as catalysts in the pyrolysis of polypropylene (PP). The effects of zeolites on the degradation temperature and pyrolyzed products of PP were studied. It was found that the degradation temperature of PP strongly depended on the type of zeolite used and the amount added. One type of HY zeolite (320HOA) was shown to be a very effective catalyst. Pyrolysis products, which were identified by using a coupled gas-chromatograph-mass-spectrometer, were also affected by the addition of zeolites. Some zeolites did not change the structure of the products but narrowed the product distribution to a smaller molecule region, while the HY zeolite led to hydrocarbons concentrated at those containing 4-9 carbons. Furthermore, some new compounds with cyclic structures were found in the presence of the HY zeolite. (C) 1996 Elsevier Science Limited
Resumo:
Scanning electron microscopy (SEM) and an image analyser are used to study morphologies of the fractured surface, etched by hot phenol, of polypropylene/maleated polypropylene/polyamide 12 PP/PP-MA/PA12) = 65/10/25 blend and PP-MA/PA12 = 75/25 blend. The particle dimension and its distribution of PA12 dispersed phase in these blends are much lower and narrower than that of the PP/PA12. blends. Especially, most of the particles in the PP-MA/PA12 = 75/25 blend are smaller than 0.1 mu m. The effect of the morphology of PP/PA12 blends on their crystallization behaviour is studied using differential scanning calorimetry and SEM. PA12 dispersed phase coarsens during annealing in the PP/PP-MA/PA12 = 65/10/25 blend. The mechanism of coarsening of the PA12 dispersed phase is a coalescence process. The intense mixing between the PP component and the PA12 component through reaction of PP-MA and PA12 leads to a change of dynamic mechanical behaviour of the components. A separation method is used to separate the polyolefin parts (precipitated from hot phenol), from PA12 parts (hot phenol filtrate). Of PP/PP-MA/PA12 = 65/10/25 blend, infra-red measurements and elementary analysis show that the precipitate has a lower PA12 content than the feed, whereas the filtrate has a higher PA12 content. From PP-MA/PA12 = 75/25 blend, PA12 contents in the precipitate and the filtrate are the same as in the feed. This implies that all PA12 has reacted with all PP-MA in the latter case while not in the former case. Using the method of interface exposure, interfacial reaction of PP-MA with PA12 is studied by X-ray photoelectron spectrometry (X.p.s.). Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The effect of the morphology of polypropylene (PP)/nylon 12 (PA12) blends on their crystallization behaviour is studied using differential scanning calorimetry and scanning electron microscopy. In PP/maleated polypropylene (PP-MA)/PA12 = 65/10/25 blend, simultaneous crystallization of the PP/PA12 blend occurs under some conditions. When the diameter of the dispersed phase (PA12) is smaller than 0.5 mu m, PP crystallizes first and its crystals induce the crystallization of PA12. When some of the PA12 particles are larger than 0.5 mu m, this part of PA12 crystallizes first. Then this part of the PA12 crystals induces the crystallization of PP, and PP crystals induce the crystallization of PA12 fine droplets in turn.
Resumo:
A new mono-substituted titanocene, (eta(5)-cyclopentadienyl) [eta(5)-(1-(4-methoxyphenyl) cyclohexyl) cyclopentadienyl] dichlorotitanium (I), has been prepared via a novel modified synthesis, and its X-ray crystal structure has been determined. It crystallizes in the orthorhombic space group P2(1)2(1)2(1) with cell constants a=0.968 0(5) nm, b=1.284 6(5) nm, c=1.694 4(6) nm, Z=4, R=0.066. The I/methylaluminoxane (MAO) catalyst system produces at different polymerization temperatures either an isotactic or a syndiotactic polypropylene, both of which have the combined influence of enantiomorphic-site control and chain-end control, or an atactic polypropylene controlled by Bernoullian propagation mechanism.
Resumo:
This paper reports a study of compatibilization and the mechanism of compatibilization of polypropylene (PP)/thermoplastic polyurethane (TPU) blends with maleated polypropylene (PP-MA) and its graft copolymer with polyethylene oxide (PEO), (PP-MA)-g-PEO.
Resumo:
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP (PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilize
Resumo:
The thermal oxidation behaviour of polypropylene containing tetramethylpiperidine compounds and corresponding pentamethylpiperidine compounds are compared using air oven aging, oxygen uptake and thermogravimetry. Carbonyl formation, the induction period of oxygen absorption and weight loss have been selected to characterize the degree of oxidation. The results show that the stabilizing effectiveness of pentamethylpiperidines is always higher than that of tetramethyl types. Radical-trapping mechanisms cannot explain this, because large amounts of nitroxyl radicals are formed by the tetramethylpiperidine compounds. The quenching of singlet oxygen appears to be involved in thermal oxidation of polypropylene containing pentamethylpiperidine compounds. Specific hydrogen bonding between pentamethylpiperidines and hydroperoxide may account for their better thermal stabilizing action than tetramethylpiperidines.
Resumo:
Blends with a liquid-crystal polymers (LCP) as one component show, in general, very interesting properties. Reduction of shear visocity and improvement of mechanical properties are very remarkable. High melting temperatures and high costs of the LCP limit the use of these blends. A new class of thermotropic LCPs with flexible spaces, with relatively low melting temperatures, can overcome the first problem. In this work, rheological and mechanical properties of blends of polypropylene with low contents of this LCP are presented. Torque during extrusion and viscosity decrease with LCP content. Elastic modulus is remarkably increased when the LCP phase is oriented.
MORPHOLOGY AND PROPERTIES OF POLYPROPYLENE ETHYLENE DIMETHYLAMINOETHYL METHACRYLATE COPOLYMER BLENDS
Resumo:
Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description, damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.