144 resultados para INELASTIC PROCESSES
Resumo:
To analyze the complicated relationships among the variables during the reactive extrusion process of polyamide 6 (PA6), and then control the chemical reaction and the material structures, the process of continuous polymerization of caprolactam into PA6 in a closely intermeshing co-rotating twin screw extruder was simulated by means of the finite volume method, and the influences of three key processing parameters on the reactive extrusion process were discussed. The simulated results of an example were in good agreement with the experimental results.
Resumo:
In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.
Resumo:
Investigation of a heterogeneous electron-transfer (ET) reaction at the water/1,2-dichloroethane interface employing a double-barrel micropipet technique is reported. The chosen system was the reaction between Fe(CN)(6)(3-) in the aqueous phase (W) and ferrocene in 1,2-dichloroethane (DCE). According to the generation and the collection currents as well as collection efficiency, the ET-ion-transfer (IT) coupling process at such an interface and competing reactions with the organic supporting electrolyte in the organic phase can be studied. In addition, this technique has been found to be an efficient method to distinguish and measure the charge-transfer coupling reaction between two ions (IT-IT) processes occurring simultaneously at a liquid/liquid interface. On this basis, the formal Gibbs energies of transfer of some ions across the W/DCE interface, such as NO3-, NO2-, Cl-, COO-, TBA(+), IPAs+, Cs+, Rb+, K+, Na+, and Li+, for which their direct transfers are usually difficult to obtain because of the IT-IT coupling processes, were quantitatively evaluated.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
The combination of in situ surface plasmon resonance (SPR) with electrochemistry was used to investigate the electrochemical doping/dedoping processes of anions on a polyaniline (PAn)-modified electrode. Electrochemical SPR characteristics of the PAn film before and after doping/dedoping were revealed. The redox transformation between the insulating leucoemeraldine, and the conductive emeraldine, corresponding to the doping/dedoping of anion, can lead to very distinct changes in both the resonance minimum angle and the shape of SPR curve. This is ascribed to the swelling/shrinking effect, and the change of the PAn film in the imaginary part of the dielectric constant resulted from the transition of the film conductivity. In situ recording the time evolution of reflectance change at a fixed angle permits the continuous monitoring of the kinetic processes of doping/dedoping anions. The size and the charge of anions, the film thickness, as well as the concentration of anions are shown to strongly influence the rate of ingress/egress of anions. The time differential of SPR kinetic curves can be well applied in the detecting electroinactive anion by flow injection analysis. The approach has higher sensitivity and reproducibility compared with other kinetic measurements, such as those obtained by amperometry.
Resumo:
The interaction between polyaniline (PAn) and 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was investigated by means of cyclic voltammetry and UV-visible spectroscopy. The results show that the polymerization-depolymerization reaction of DMcT or its dilithium salt Li(2)DMcT is a kinetically quasi-reversible process. PAn exhibits very weak electrochemical activity in neutral propylene carbonate. After doping with protonic acid, such as hydrochloric acid or maleic acid etc., however, it shows an extensively enhanced electroactivity. For the complex system, PAn-DMcT or PAn-Li(2)DMcT, polyaniline has no catalytic activity for the electrochemical polymerization-depolymerization reaction of DMcT or DMcT(2-). Instead, the enhancement of the electrochemical redox activity of PAn-DMcT system compared with that of PAn, DMcT, Li(2)DMcT, and PAn-Li(2)DMcT comes from the protonic doping of PAn by DMcT.
Resumo:
Blend modified polyimide (PI) hollow fiber membranes were used in vapor permeation for gas phase dehydration of ethanol. Dry air sweeping operation was used and the dry air was supplied by a dehumidification membrane module of compressed air. An integrated membrane process was composed. The effects of some factors, such as the modification of membrane materials, the humidity and current velocity of sweeping air, the operation temperature, on the efficiency of dehydration were discussed.
Resumo:
The rational synthesis and the structural and magnetic characterization of a nickel cluster are presented. The compound comprises a rhomblike Ni4O16 group encapsulated between two-heptadentate tungstoarsenate ligands [AsW9O34](9-). The crystal structure of K-10[Ni-4(H2O)(2)(AsW9O34)(2)](.)4H(2)O was solved in monoclinic, P2(1)/n symmetry, with a = 12.258(3) Angstrom, b = 21.232(4) Angstrom, c = 15.837(3) Angstrom, beta = 92.05(3)degrees, V = 4119.1(14) Angstrom(3), Z = 2, and R = 0.0862. The crystal structure of the Ni(II) derivative was compared with that of the Cu(II), Zn(II), Co(II) and Mn(II) derivatives. The Ni4O14(H2O)(2) unit in the compound shows no Jahn-Teller distortion. On the other hand, the Ni(II) derivative shows ferromagnetic exchange interactions within the Ni4O16 group (J = 7.8 cm(-1), J' = 13.7 cm(-1)) and an S = 4 ground state, the highest spin state reported in a heteropoly complex. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited two steps of one-electron redox waves attributed to redox processes of the tungsten-oxo framework. The new catalyst showed an electrocatalytic effect on the reduction of NO2-.
Resumo:
A four-level decay model in KMgF3:Eu2+ is proposed. The decay profiles of the P-6(7/2) excited state of Eu2+ are biexponential, and the physical implication of each term in the fit equation responsible for the model is interpreted. The evidence obtained spectroscopically for supporting the model is presented. A new method to study energy transfer between Eu2+ and X3+ in KMgF3:Eu-X (X = Gd, Ce, Cr) is established on the basis of the proposed model.
Resumo:
Electrochemical quartz crystal microbalance (EQCM) technique was used to measure the ion transfer in redox processes in electroactive organic thin films, such as self-assembled monolayer (SAM) (4-pyridyl hydroquinone, abbr. 4PHQ), multilayer based on SAM and conducting polymer film (here poly-(3,4-ethylenedioxythiophene), abbr. PEDOT). A mechanism of mixed ion transfer is developed and presented. Analysis of mixed ion transfer during redox processes successfully elucidates the deviation of oscillation frequency of the quartz crystal from theoretical expectation.
Resumo:
In the presence of F-, OH-, Cl-, electrochemical redox of (OEP)Mg(II) [2,3, 7,8,12,13,17,18 octaethyl-21H, 23H-porphine magnesium (II)] are investigated in DCE/0.1 mol/L solution by cyclic voltammetry and spectroelectrochemistry, In the presence of anions, anions are axially coordinated to (OEP)Mg(II) generate (OEP)Mg(II)Y, the E-1/2 of (OEP)MS(II)Y oxidation are negatively shifted. A chemical reaction following the second oxidation step is observed, the E-1/2 of the reaction product is obtained. Mechanism of (OEP)Mg(II) in the halogen and OH- anions titration process has been proposed.
Resumo:
The protonation process of two DTPA bis(amide) derivatives, DTPA-BDMA and DTPA-BDEA, was studied by using H-1 NMR titration and MOPAC calculation. Their protonation process was proposed in the order of the central amine, the terminal amines, the central carboxyl, the terminal carboxyl, the other terminal carboxyl and central amine. During the protonation of the terminal amine, there existed a large fraction of proton transfer from the central amine to the other terminal amine.
Resumo:
Partially N-methylated polyaniline (NMPAn) is used instead of polyaniline (PAn) to make a composite with organodisulfides for cathodes of lithium secondary batteries. NMPAn displays a better electrocatalytic effect on the redox processes of organodisulfides than PAn. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Thermal decomposition processes of poly(thio-1,4-phenylene) (PPS), polythiophene (PT) and polyaniline (PAn) were investigated by direct pyrolysis EI or CI mass spectrometry (DPMS). They can provide up to heptemer pyrolynates and give some structure properties. The results indicate that the thermal degradation all undergoes in radical decomposition, PPS pyrolyzes into linear and cyclic oligmers, but PT and PAn pyrolyze only into linear oligmers.