277 resultados para Gel retraction
Resumo:
A series of Eu3+-doped ZnO films have been prepared by a sol-gel method. These films were characterized by X-ray diffraction (XRD) and photoluminecent spectra (PL). Effects of synthetic parameters, such as annealing atmosphere, temperature and concentration of doped ions, on the highly oriented crystal growth were studied in detail. The crystalline structures of films annealed in vacuum have a wurtzite symmetry with highly c-axis orientation. A characteristic D-5(0) -> F-7(J)(J = 1, 2, 3 and 4) red emission is observed due to energy transfer from the ZnO host to the doped Eu3+ in the c-oriented ZnO films.
Resumo:
In this work, a polyelectrolyte-functionalized ionic liquid (PFIL) was firstly incorporated into a sol-gel organic-inorganic hybrid material (PFIL/sol-gel). This new composite material was used to immobilize glucose oxidase on a glassy carbon electrode. An enhanced current response towards glucose was obtained, relative to a control case without PFIL. In addition, chronoamperometry showed that electroactive mediators diffused at a rate 10 times higher in the apparent diffusion coefficient in PFIL-containing matrices. These findings suggest a potential application in bioelectroanalytical chemistry.
Resumo:
Plasticized poly(L-lactide)-silica nanocomposite materials have been successfully synthesized by sol-gel process. The resultant nanocomposites were characterized by infrared spectra (IR), X-ray diffraction (XRD), thermogravimetry (TG), Tensile testing and scanning electron microscope (SEM). IR measurements show that vibration of C-O-C group is confined by silica network. Also the crystallization of poly (L-lactide) is partly confined by silica network. The presence of even small amount of silica largely improves the tensile strength of the samples, TGA results reveal that the thermal stability of samples is improved with silica loading.
Resumo:
Silica-gel nanowire/Na+-montmorillonite (Na+-MMT) nanocomposites were prepared by the in situ sol-gel process of tetraethyl orthosilicate (TEOS) in the presence of Na+-MMT and ammonia as catalyst. Microstructure characterization of the nanocomposites was done by SEM, , EDX, XRD and FTIR. It was found that a lot of silica-gel nanowires grew along the edges of Na+-MMT. The combination between the nanowires and Na+-MMT was accomplished via polycondensation of the hydrolyzed TEOS and the edge-OH groups of Na+-MMT.
Resumo:
Nanocrystalline Pb(Zr0.52Ti0.48)O-3 was prepared from lead acetate, zirconium oxynitrate and titanium tetra-n-butoxide by a sol-gel method. It is found that both the crystallization temperature of precursor PZT and PZT product size were increased with increase of V(C3H8O2)/V(H2O) ratio in solution used. At V(C3H8O2)/V(H2O) = 4.47 the gel was formed moderately quick, and the nanocrystalline PZT with uniform granularity and low crystallizing temperature could be obtained. The diameter of the final nanocrystalline was ranged 60similar to70 nm as measured by atomic force microscopy (AFM). The crystallizing temperature of the precursor PZT was 443degreesC and the crystallization reaction was completed at 500degreesC by DTA and TG. The sol-gel reaction process was monitored by FT-IR and XRD.
Resumo:
An on-chip disk electrode based on sol-gel-derived carbon composite material could be easily and reproducibly fabricated. Unlike other carbon-based electrodes reported previously, this detector is rigid, convenient to fabricate, and amenable to chemical modifications. Based on the stable and reproducible characters of this detector, a copper particle-modified detector was developed for the detection of carbohydrates which extends the application of the carbon-based electrode. In our experiments, the performance of the new integrated detector for rapid on-chip measurement of epinephrine and glucose was illustrated. Experimental procedures including the fabrication of this detector, the configuration of separation channel outlet and electrode verge, and the performance characteristics of this new electrochemical detector were investigated.
Resumo:
The gelation of physically associating triblock copolymers in a good solvent was investigated by means of the Monte Carlo simulation and a gelation process based on the conformation transition of the copolymer that was described in detail. In our simulative system, it has been found that the gelation is closely related with chain conformations, and there exist four types of chains defined as free, dangling, loop, and bridge conformations. The copolymer chains with different conformations contribute to the formation of gel in different ways. We proposed a conformational transition model, by which we evaluated the role of these four types of chains in sol-gel transition. It was concluded that the free chains keeping the conformation transition equilibrium and the dangling conformation being the hinge of conformation transition, while the chain with loop conformation enlarges the size of the congeries and the chain with bridge conformations binds the congeries consisted of the copolymer chains. In addition, the effects of temperature and concentration on the physical gelation, the association of the copolymer congeries, and the copolymer chain conformations' distribution were discussed.
Resumo:
(Ni0.65Zn035Cu0.1Fe1.904)-Cu-./SiO2 natiocomposites were fabricated by the sol-gel method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. With infrared spectra, X-ray diffraction, transmission electron microscope, Raman spectra, Mossbauer spectroscopy and vibrating sample magnetometer measurements, the formation of single phase nanocrystalline NiZnCu ferrites dispersed in silica matrix is confirmed when the sample is annealed at 550degreesC. The transition from the paramagnetic to the ferromagnetic state is observed as the annealing temperature increases from 750degreesC to 1150degreesC. The magnetic properties of these nanocomposites are clearly size dependent. The saturation magnetization increases with the annealing temperature.
Resumo:
Polyvinyl alcohol (PVA) was first used as chelating agent and metal nitrates as precursor of ferrite in the fabrication of nanocrystalline Ni0.65Zn0.35Cu0.1Fe1.9O4 particles by the sol-gel method. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and Mossbauer spectroscopy. The dependence of the decomposition of dried gel, the formation of spinel structured NiZnCu ferrite, the sizes of annealed particles, the saturation magnetization and coercivity of annealed particles on annealing temperature is presented.
Resumo:
MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.
Resumo:
Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of alpha-Fe2O3. The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%.
Resumo:
Using CaCO3, metal oxides (all dissolved by nitric acid) and tetraethoxysilane Si(OC2H5)(4) (TEOS) as the main starting materials, Ca2R8(SiO4)(6)O-2:A (R = Y, La, Gd; A = EU3+, Tb3+) phosphor films have been dip-coated on quartz glass substrates through the sol-gel process. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the 1000 degreesC annealed films are isomorphous and crystallize with the silicate oxyapatite structure. AFM and SEM studies revealed that the phosphor films consisted of homogeneous particles ranging from 30 to 90 nm, with an average thickness of 1.30 mum. The Eu3+ and Tb3+ show similar spectral properties independent of R 3, in the films due to their isomorphous crystal structures. However, both the emission intensity and lifetimes of Eu3+ and Tb3+ in Ca2R8(SiO4)(6)O-2 (R = Y, La, Gd) films decrease in the sequence of R = Gd > R = Y > R = La, which have been explained in accordance with the crystal structures.
Resumo:
Rare earth ions (Eu3+ and Dy3+)-doped Gd-2(WO4)(3) phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600degreesC and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, WO(4)(2-)mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from 4 groups, the rare earth ions show their characteristic emissions in crystalline Gd-2(WO4)(3) phosphor films, i.e., D-5(J) -F-7(J), (J = 0, 1, 2, 3; J' = 0 1, 2, 3, 4, not in all cases) transitions for Eu3+ and F-4(9/2)-H-6(J) (J = 13/2, 15/2) transitions for D Y3+, with the hypersensitive transitions D-5(0)-F-7(2) (Eu3+) and F-4(9/2) - H-6(13/2) (Dy3+) being the most prominent groups, respectively.