108 resultados para Galois covering
Resumo:
Sedimentary provenance direction,sedimentary facies,reservoir geological characteristic,pore structure; physical property characteristic,reservoir classification and evaluation ,forthermore,favorable area area are forecasted of Yanchang formation in ZhiDan region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on,in the thesis. The following fruits are mainly achieved in this paper: Yanchang formation stratum is divided and correlated in this entire region, and the characteristic of oil layer unit is detailed discussed , respectively. According to main marker bed and supplementary ones.and research result shows that the source of provenance direction during Yanchang Formation mianly is north-east. Delta and lake are mainly developed in study area ,sub-facies and micro-facies are divided,distribution of sedimentary micro-facies in plane and palaeogeographic evolution are described,and gentle slope type- shallow water delta depositional model is established. Fine-grain arkose sandstone is the main reservoir,and which have experienced such different degree diagenesis as compaction, cementation, replacement and dissolution, and in which compaction and cementation are mainly factors to reduce sandstone physical property and dissolution effectively improved physical property during burial diagenesis procedure. All reservoirs of Yanchang Formation have entered A period of late diagenetic stage according to scheme of diagenesis period division . Intergranular porosity,dissolution porosity,fissure porosity are main pore types. And porosity structure are analyse by mercury penetration capillary pressure parameter,fine-shortness type and fine- length throat type are mainly developed. as a whole,the reservoir, with the characteristic of porosity and permeability altering apparently,strong inhomogeneity , is a medium- porosity and medium permeability one. In plane,higher- porosity and higher-permeability are corresponded well with distributary channel area, physical property and inhomogeneity are affected by both deposition and diagenesis,and distributary channel and underwater distributary channel are favorable facies . According to such characteristic as lithology,physical property,pore structure ,diagenesis and sandstone distribution, the sandy reservoir can be classified 4 types, and the main sandy in every oil layer unit are evaluated according to the standard. The analysis result of petroleum concentration rule shows that Yanchang Formation are with not only favourable oil source rock,reservoir,covering combination ,but also good entrapment condition in study area. Lithology and structure-lithology oil pool are mainly developed ,based on condition of favorable reservoir developments,accounting for deliverability and sandstone superface elevation,zone of profitabilitis are forecasted.
Resumo:
There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.
Resumo:
In this paper, the complex faulted-block oil reservoir of Xinzhen area in Dongying depression is systematically studied from basic conditions forming faulted-block oil and gas reservoir integrating geology, seismic, logging and reservoir engineering information and computer; guided by petroleum geology, geomechanics, structural geology and geophysics and other theories. Based on analysis of background condition such as regional strata, structure and petroleum geology, structural research on geometry, kinemaitcs and dynamics, oil-controlling fault research on the seal features, sealing mechanism and sealing pattern, and research on enrichment rules and controlling factors of complex faulted-block oil reservoir are carried out to give out the formation mechanics of oil reservoir of Xinzhen complex faulted-block oil reservoir. As a result, the reservoir formation pattern is established. At the same time, through dissecting the characteristics and hydrocarbon enrichment law of complex faulted-block oil reservoir, and studying its distribution law of remaining oil after entering extra high water-cut period, a set of technologies are formed to predict complex faulted-block oil reservoir and its remaining oil distribution and to enhance oil recovery (EOR). Based on the time relationship between migration of hydrocarbon and trap formation, accumulating period of Xinzhen oil reservoir is determined. The formation of Xinzhen anticlinal trap was prior to the primary migration. This is favorable to formation of Xinzhen anticlinal hydrocarbon reservoir. Meanwhile, because anticline top caving isn't at the sane time as that of moving or faulted-trap forming inner anticline, oil and gas migrated many times and Xinzhen complex faulted-block oil reservoir formed from ES_3~(upper) to EG. Accumulating law and controlling factors of complex faulted-block reservoir are analyzed from many aspects such as regional structure background controlling hydrocarbon accumulating, plastic arch-open structure controlling oil-bearing series and reservoir types, sealing-opening of fault controlling hydrocarbon distribution and structure pattern controlling enriched trap types. Also, we established the structure pattern in Xinzhen a'ea: the arch-open of underlying strata cause expanding fracture. The main block groups developed here are shovel-like normal fault block group in the north area of Xinzhen and its associated graben block group. Block groups dominate the formation and distribution of reservoirs. We studied qualitatively and quantitatively the sealing characteristics, sealing history and sealing mechanism of faults, too. And, the sealing characteristics are evaluated and the distribution pattern of hydrocarbon controlled by faults is researched. Due to movement intensity of big faults, deep falling of downthrown block, high degree of repture and development of fracture, shallow layers close to the downthrown block of secondary faults are unfavorable to hydrocarbon accumulation. This is confirmed by the exploration practice in Xinzhen anticline. In terms of the downthrown blocks of sencondary contemporaneous faults lied in the south and north area of Xinzhen, hydrocarbon is poor close to fracture belt, while it is relatively abundant in tertiary companion faults. Because of long-term movement of faults that control hydrocarbon, fi'om ES3 to EG, six set of oil-bearing series formed. And their opening causes the inhomogeneity in hydrocarbon abundance among each block--in two flanks of anticline reservoirs are abundant while in the axial area, oil and gas are sporadic. There the sealing characteristics control oil-bearing area of oil/gas accumulation and the height of oil reservoir. Longitudinally, oil and gas are enriched in dip-flat areas in mid-plane of faults. It is established that there are four types of accumulating patterns in complex faulted-block oil reservoirs in Xinzhen. The first is accumulating pattern of lithologic oil reservoirs in E~S_3~(mid-lowwer), that is, self-generating-self-reserving-self-covering lithologic trap pattern. The second is drag-anticline accumulating pattern in Xinzhen. The structure traps are drag anticlines formed by the contemporaneous faults of the second basement in the north of Xinzhen, and the multiple source rocks involve Ek_2, Es_4, Es_3 and Es_1 members. The reservoirs are fluvial-delta sandstones of the upper member of Shahejie formation and Guantao formation, covered by regional thick mudstone of the upper member of Guantao formation and MingHuazhen formation. The third is the accumulating pattern of reverse listric fault, the third-degree fault of Xinzhen anticline limb and the reservoirs form reservoir screened by reverse listric faults. The forth is accumulating pattern of crossing faults which form closing or semi-closing faulted-blocks that accumulate hydrocarbon. The technologies of predicting remaining oil in complex faulted-block reservoir during the mid and late development stage is formed. Remaining oil in simple large faulted-blocks enriches in structural high, structural middle, structural low of thick bottom water reservoirs, points near bent edge-fault oftertiary faults and part the fourth ones with big falling displacement, microstructure high place of oil-sandbodies and areas where local well pattern isn't perfect. While that in small complex faulted-blocks enriches near small nose, small high point, angle of small faults, small oil-bearing faulted-blocks without well and areas with non-perfect well pattern. The technologies of enhancing recovery factor in complex faulted-block reservoir during the mid and late development stage is formed as follows: fine reservoir description, drilling adjust wells, designing directional wells, sub-dividing layer series of development, improving flooding pattern, changing water-injection direction and enhancing swept volume, cyclic waterflooding and gas-injection, etc. Here, directional wells include directional deflecting wells, lateral-drilling wells, lateral-drilling horizontal wells and horizontal wells. The results of this paper have been used in exploration and development of Shengli oilfield, and have achieved great social and economic profit, especially in predicting distribution of complex faulted-block reservoir, remaining oil distribution during middle and late stage of development, and in EOR. Applying the achievement of fault-closure research, new hydrocarbon-bearing blocks are discovered in flanks of Dongying central uplift and in complex blocks with proved reserves 15 million tons. With the study of remaining oil distribution law in complex faulted-block reservoirs, recovery factors are increased greatly in Dongxin, Xianhe and Linpan complex faulted-block reservoirs and accumulated oil production increment is 3 million tons.