229 resultados para GREEN ROUTE
Resumo:
A convenient and efficient synthesis of substituted dihydrofurans is developed via ring-enlargement of 1-dimethylaminopropenoyl-1-carbamoyl/benzoyl cycloproparres catalyzed by ammonium acetate in acetic acid with high regio- and stereoselectivity. Some of the newly synthesized substituted dihydrofurans are subjected to further synthetic transformation in the presence of NaOH (aq) in ethanol to afford the corresponding 5-aryl-2,3-dihydrofuro[3,2-c]pyfidin-4(5H)-ones in high yields.
Resumo:
We first report a simple and rapid electrochemical approach to synthesize novel nanofiber junctions and dendrites of conducting poly(o-phenylenediamine) without any surfactant or template. Through controlling some parameters such as the time and potential of electrodeposition and concentration of the reactant, nanofiber junctions and dendrites of conducting polymer can be easily obtained on the solid surface.
Resumo:
In this paper, we demonstrate a novel and efficient route by which the shape-controlled synthesis of t-Se nano/microstructures including nanowires, nanorods, nanobelts, microtubes, and flowers, as well as uniform spheres of a-Se, can be readily realized based on solution-mediated heat treatment with commercially available Se powders. X-ray diffraction (XRD), energy-dispersive X-ray spectra (EDS), Raman spectra, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques were used to characterize the samples.
Resumo:
By using ethylenediamine as both an alkali and ligand, quantum size SnO2, nanocrystallites were synthesized with a solvothermal route. The transmission electron micrographs (TEM) were employed to characterize the morphologies of the products. The crystal sizes of the as-synthesized SnO2 were ranged form 2.5 to 3.6 nm. The crystal structure and optical properties of the products were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, optical absorption spectra, photoluminescence and Raman spectra.
Resumo:
In this work, a one-dimensional microrod-based three-dimensional flowerlike indium hydroxide (In(OH)(3)) structure was fabricated, without any templates or surfactants, using a well-known hydrothermal approach at a non-high temperature. In2O3 with similar morphology was formed by annealing In(OH)3 precursors and was characterized by Raman spectrum and photoluminescence (PL) spectrum in detail.
Resumo:
Different morphologies of Ag2S nano- and micro-materials, including spokewise micrometer bars, microfibers, nanowires, worm-like nanoparticles and nanopolyhedrons have been obtained controllably by a facile one-step method at room temperature. Powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and scanning electron microscope (SEM) were employed to characterize the structure and compositions of those nanomaterials. Furthermore, ultraviolet visible (UV-vis) spectra of Ag2S with different morphologies show different spectral features.
Resumo:
Stable gold nanoparticles with average size 1.7 nm synthesized by an amine-terminated ionic liquid showed enhanced electrocatalytic activity and high stability.
Resumo:
We developed an approach to realize blue, green and red emission from top-emitting white organic light-emitting diodes (OLEDs) through depositing exterior tunable optical films on top of the OLEDs. Three primary colors for full color display including blue, green and red emission are achieved by controlling the wavelength-dependent transmittance of the multilayer optical films overlaid on the emissive layer.
Resumo:
A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques.
Resumo:
A novel route for the synthesis of a variety of 2-trifluoromethylbenzofurans is reported. By selection of solvents, the key intermediates, 2-chloro-3,3,3-trifluoropropenyl phenyl acetates, were cyclized either to give 2-trifluoromethyl-substituted benzofurans or to yield trifluoromethyl modified o-alkynylphenols. The latter intermediates could also be cyclized to give 3-iodo-2-trifluoromethyl-substituted benzofurans.
Resumo:
Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.
Resumo:
A series of heteroleptic green iridium dendrimers functionalized with carbazole dendrons, such as G2(pic) and G2(acac), have been synthesized, in which picolinic acid and acetylacetone are used as the ancillary ligands, respectively. Compared with the corresponding homoleptic iridium dendrimer G2 (8%), these heteroleptic ones can be prepared under mild conditions with total yields as high as 55-67%. Both the dendrimer G2(pic) and G2(acac) display bright green emissions with photoluminescence quantum yields higher than 0.80 in toluene solution. As a result, a maximum external quantum efficiency of 7.1% (21.0 cd/A) for G2(pic) and 7.7% (25.8 cd/A) for G2(acac) has been realized based on non-doped device configuration. The state-of-art performance indicates that the heteroleptic dendrimers can be promising candidates used for non-doped electrophosphorescent devices, especially when the ease of synthesis in a large scale is considered.
Resumo:
Lu2O3:Yb3+/Er3+/Tm3+ nanocrystals have been successfully synthesized by a solvothermal process followed by a subsequent heat treatment at 800 degrees C. Powder X-ray diffraction, transmission electron microscopy, upconversion photoluminescence spectra, and kinetic decay were used to characterize the samples. Under single-wavelength diode laser excitation of 980 nm, the bright blue emissions of Lu2O3:Yb3+, Tm3+ nanocrystals near 477 and 490 nm were observed due to the (1)G(4)-> H-3(6) transition of Tm3+. The bright green UC emissions of Lu2O3:Er3+ nanocrystals appeared near 540 and 565 nm were observed and assigned to the H-2(11/2)-> I-4(15/2) and S-4(3/2)-> I-4(15/2) transitions, respectively, of Er3+. The ratio of the intensity of green luminescence to that of red luminescence decreases with an increase of concentration of Yb3+ in Lu2O3:Er3+ nanocrystals.