150 resultados para GPA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3, hexagonal P3(2)21, tetragonal P4(2)/mnm, orthorhombic Pmmn, Pnnm, and Pnn2, and monoclinic P2(1)/c. Our calculation indicates that the P2(1)/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414 A. These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P2(1)/c. The calculated bulk modulus of 373 GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357 GPa within 4.3% and of 402 GPa within 7.8%, but smaller than the experimental value of 428 GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2. For IrN3, cubic skutterudite structure (Im-3) was assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m, Pa-3, and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418 A. These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394 GPa is also the highest among the considered space groups, slightly larger than previous value 358 GPa. The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new synthetic procedure was elaborated allowing the preparation of semiaromatic dianhydride. N-Methyl protected 4-chlorophthalic anhydride was nitrated with HNO3 to produce N-methyl-4-chloro-5-nitrophthalimide (1). The aromatic nucleophilic substitution reaction between 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1-spirobisindane and 1 afforded spirobisindane-linked bis(N-methylphthalimide) (2), which was hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). The latter was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The properties of polyimides such as inherent viscosity, solubility, UV transparency and thermal stability were investigated to illustrate the contribution of the introduction of spirobisindane groups into the polyimide backbone. The resulting polyimides were readily soluble in polar solvents such as chloroform, THF and N-methyl-2-pyrrolidone. The glass-transition temperatures of these polyimides were in the range of 254-292 degrees C. The tensile strength, elongation at break, and Young's modulus of the polyimide film were 68.8-106.6 MPa, 5.9-9.8%, 1.7-2.0 GPa, respectively. The polymer films were colorless and transparent with the absorption cutoff wavelength at 286-308 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of soluble six-membered ring polynaphthalimides (PNIs) was synthesized from asymmetrical fluorinated naphthalenesubstituted monomers. All the resulting PNIs were easily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO). and chloroform. They also showed good thermal stability with glass transition temperature of 340-386 degrees C, 10% weight loss temperature in excess of 529 degrees C. Polyimide 3c could be solution-cast into tough and flexible film. The film had a tensile strength, elongation at break, and Young's modulus of about 117.6 Wa, 23.6%, and 1.77 GPa, respectively. The gas permeation property of the film of 3c was investigated with oxygen permeability coefficient (PO2 = 3.99) and permeability selectivity coefficient of oxygen to nitrogen (P-O2/P-N2 = 5.27). Therefore, these materials are expected to be a good alternative to PIs based on five-membered rings with applications in gas separation membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and I afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in in-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 degrees C and 526 to 565 degrees C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 degrees C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of dianhydride monomers, 2,2'-disubstituted-4,4',5,5'-biphenyltetracarboxylic dianhydride (substituents = phenoxy, p-methylphenoxy, p-tert-butylphenoxy, nitro, and methoxy) were synthesized by the nitration of an N-methyl protected 3,3',4,4'-biphenyttetracarboxylic dianhydride (BPDA) and subsequent aromatic nucleophilic substitutions with aroxides (NaOAr) or methoxide. These dianhydrides were polymerized with various aromatic diamines in refluxing m-cresol containing isoquinoline to afford a series of aromatic polyintides. The effects of varying 2,2'-substituents of the dianhydride (BPDA) moiety on the properties of polyimides were investigated. It was found that polyimides from the dianhydrides containing phenoxy, p-methylphenoxy, and p-tert-butylphenoxy side groups possessed excellent solubility and film forming capability whereas polyimides from 2,2'-dinitro-BPDA and 2,2'-dimethoxy-BPDA were less soluble in organic solvent. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 102-168 MPa, 8-21%, 2.02-2.38 GPa, respectively. The polymer gas permeability coefficients (P) and ideal selectivities for N-2, O-2, CO2 and CH4 were determined for the -OAr substituted polyimides. The oxygen permeability coefficient (P-O2) and permselectivity of oxygen to nitrogen (PO2/N-2) of the films were in the ranges 3.4-11.3 barrer and 3.8-4.6, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of high-performance materials, fluorinated poly(phenylene-co-imide)s, were prepared by Ni(0)-catalytic coupling of 2,5-dichlorobenzophenone with fluorinated dichlorophthalimide. The synthesized copolymers have high molecular weights ((M) over bar (W)= 5.74 x 10(4)-17.3 x 10(4) g center dot mol(-1)), and a combination of desirable properties such as high solubility in common organic solvent, film-forming ability, and excellent mechanical properties. The glass transition temperature (T(g)s) of the copolymers was readily tuned to be between 219 and 354 degrees C via systematic variation of the ratio of the two comonomers. The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 66.7-266 MPa, 2.7-13.5%, and 3.13-4.09 GPa, respectively. The oxygen permeability coefficients (P-O2) and permeability selectivity of oxygen to nitrogen (P-O2/P-N2) of these copolymer membranes were in the range of 0.78-3.01 barrer [1 barrer = 10(-10) cm(3) (STP) cm/(cm(2) center dot s center dot cmHg)] and 5.09-6.2 5, respectively. Consequently, these materials have shown promise as engineering plastics and gas-separation membrane materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of high-performance polymers [poly(phenylene-co-naphthalimide)s] was prepared through the Ni(0) catalytic coupling of N-(4-chloro-2-trifluromethylphenyl)-5-chloro-1,8-naphthalimide and 2,5-dichlorobenzophenone. The resulting copolymers exhibited high molecular weights (high inherent viscosities) and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and mechanical properties. The glass-transition temperatures of the copolymers ranged from 320 to 403 degrees C and increased as the content of the naphthalimide moiety increased. Tough polymer films, obtained via casting from N-methylpyrrolidone solutions, had tensile strengths of 64-107 MPa and tensile moduli of 3.4-4.7 GPa. The gas permeability coefficients of the copolymers were measured for H-2, CO2, O-2, CH4, and N-2. They showed oxygen permeability coefficients and permeability selectivity of oxygen to nitrogen (permeability coefficient for O-2/permeability coefficient for N-2) in the ranges of 1.39-4.31 and 4.92-5.38 barrer, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the YAG nanopowder incorporated into the matrix. The composites of xYAG/(1-x)LZ (Y=10, 15, 20 vol. %, LZ-x-YAG) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1650 degrees C for 5 min, by which a high-relative density above 93% could be obtained. The morphologies of the fractured surfaces were investigated by the scanning electron microscope, and the fracture toughness and Vicker's-hardness of the composites were evaluated by the microindentation. The grain size of the LZ matrix drops significantly with the addition of YAG nanoparticles and the fracture type changes from the intergranular to a mixture type of the transgranular and intergranular in the nanocomposites. The LZ-20-YAG nanocomposite has a fracture toughness of 1.93 MPa m(1/2), which is obviously higher than that of the pure LZ (1.57 MPa m(1/2)), and the toughening mechanism is discussed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel hard material of (W0.5Al0.5)C-0.5 has been successfully sintered under high-pressure (4.5 GPa). The influence of sintering time and temperature on the microstructure, Vickers microhardness and density of the as-prepared specimens are well described. Interestingly, sintering temperature has an amazing influence on the hardness, density and microstructure of the specimen while the sintering time does not. It is found that the most suitable sintering condition from our work is 1600 degrees C and 10 min under pressure of 4.5 GPa. The hardness and relative density of the as-prepared sample can reach 2340 kg mm(-2) and 98.62%, respectively. The cell parameters of the sintered specimen is found to be little smaller than that of the powder, which we propose is related to the high pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al50W50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21 % and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Al50W50 alloy bulk bodies were fabricated by using mechanical alloying and hot-pressing in this work. The Al50W50 alloy had excellent thermal stability up to 1300 degreesC under vacuum and Its optimum microhardness, bending strength and compressive strength were 10.21 GPa, 570 MPa and 2.07 GPa, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure metal powder mixtures of W and Mg at the desired composition were milled in conventional high-energy ball mill, and amorphous alloy W50Mg50 was obtained after milling for 20 h. The structure evolution of elemental powder mixtures was studied following milling and subsequent high pressure and high temperature treatment. The amorphous alloy transform into a nanocrystalline material below 1050 degreesC at 4.0 GPa. On increasing the temperature, it transforms into a mixture of several new crystal phases under high-pressure condition. It also found that both mechanical alloying and high pressure treatment are the two necessary processes to form the nanocrystalline and the new phases.