160 resultados para GJ 876d
Resumo:
A hydrogen peroxide biosensor based on sol-gel-derived glasses doped with poly(ester sulfonic acid) Eastman AQ 55D was constructed. Thionine (TH), as a mediator, was incorporated in this matrix by electrostatic force between TH+ and the negatively charged sulfonic acid group in Eastman AQ polymer. Performance and characteristics of the sensor were evaluated with respect to response time, sensitivity and storage stability. The enzyme electrode has a sensitivity of 11.36 muA mM(-1) with a detection limit of 5.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady state current within 20 s. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The conformational transition of disulfides in bovine serum albumin (BSA) induced by electrochemical redox reaction of disulfides were monitored by in-situ circular dichroism (CD) spectroelectrochemistry, with a long optical path thin layer cell and analyzed by a singular value decomposition least square (SVDLS) method. Electrochemical reduction of disulfides drives the left-handed conformation of disulfides changed into the right-handed. At open circuit, eight of the 17 disulfides were of left-handed conformation. Four of the 17 disulfides took part in the electrochemical reduction with an EC mechanism. Only one-fourth of the reduced disulfides returned to left-handed conformation in the re-oxidation process. Some parameters of the electrochemical reduction process, i.e. the number of electrons transferred and electron transfer coefficient, n=8, alphan=0.15, apparent formal potential, E-1(0') = -0.65(+/-0.01) V, standard heterogeneous electron transfer rate constant, k(1)(0) = (2.84 +/- 0.14)x 10(-5) cm s(-1) and chemical reaction equilibrium constant, K-c=(5.13 +/- 0.12) x 10(-2), were also obtained by double logarithmic analysis based on the near-UV absorption spectra with applied potentials. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The redox process of norepinephrine in pH = 7.0 phosphate buffer solution at glassy carbon electrode was studied by circular dichroism spectroelectrochemistry with a long optical path thin layer cell. The spectroelectrochemical data were analyzed with the double logarithm method. According to the double logarithsmic plot results, the mechanism of electrochemical oxidation of norepinephrine is an irreversible process with a subsequent chemical reaction (EC) to form a norepinephrinechrome. Both of norepinephrinequinone and norepinephrinechrome are followed E mechanisms. Some kinetic parameters about the electrochemical process, i.e. the electron transfer coefficient and number of electron transfered, alpha n = 0.38, the formal potential, E-1(0)' = 0.20 V, the standard heterogenous electron transfer rate constant, k(1)(0) = 1.2 x 10(-4) cm s(-1) for the oxidation of norepinephrine, alpha n = 0.37, E-2(0)' = 0.25 V and k(2)(0) = 4.4 x 10(-5) cm . s(-1) for the reduction of norepinephrinequnone and alpha n = 0.33, E-3(0)' = -0.25V and k(3)(0) = 1.1 x 10(-4) cm . s(-1) for the reduction of norpinephrinechrome, were also estimated.
Resumo:
yA review with 44 references is presented on the development of sol-gel-based biosensor. The main discussions are devoted to the process, advantages and properties of sol-gel immobilization method, sol-gel optical biosensor and amperometric biosensor, also the trend in this field is forecasted.
Resumo:
The adsorption of an electroinactive product greatly influences an irreversible electrochemical reaction in three ways, including self-block, self-inhibition, and self-acceleration, and changes not only the heterogeneous electron-transfer rate constant but also the modified formal potential and electron-transfer coefficient of the electrochemical reaction. In order to study these adsorption effects, a double logarithmic method was suggested to be used in processing the potential-controlled thin layer spectroelectrochemical data. The result shows three types of double logarithmic plots for three kinds of adsorption effects. These double logarithmic plots can be a diagnostic criterion of the adsorption effects and enable us to determine some thermodynamic and kinetic parameters. The combination of nonlinear regression with double logarithmic method is a convenient way to examine the suggested mechanism and to extract more information from the limited experimental data. Some examples are given to test the theoretical results. (C) 1999 The Electrochemical Society. S0013-4651(98)05-012-5. All rights reserved.
Resumo:
A simple double logarithmic method in potential-controlled thin-layer spectroelectrochemistry for an irreversible electrochemical process has been studied by numerical analysis and examined by experimental examples. This simple algorithm has a novel function offering some important information about the mechanism of a complex electrochemical process directly from a limited amount of potential-spectrum data, and can be used to distinguish different reaction mechanisms such as E, EC, EE, as well as to determine the electron-transfer coefficient, a, and the kinetically modified E-0'. Combination of the double logarithmic method with nonlinear regression provides a powerful tool to examine the proposed mechanism and also to estimate other thermodynamic and kinetic parameters. (C) 1999 The Electrochemical Society. S0013-4651(98)06-090-X. All rights reserved.
Resumo:
The electroxidation of ergosterol was studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin layer cell. It was confirmed that the oxidation of ergosterol in ethanol solution is a two-electron irreversible electrochemical process with strong adsorption of an electroinactive product at the glassy carbon electrode, which blocks the electrochemical reaction. The CD spectroelectrochemical data were treated by the double logarithm method together with nonlinear regression, from which the formal potential, E-0 = 1.00 V, alpha n(alpha) = 0.302, the standard electrochemical rate constant, k(0) = 6.1(+/-0.4) x 10(-4) cm s(-1) and the adsorption constant, beta = 19 +/- 1, were obtained. The number of electrons transferred (n = 1.86) was estimated by cyclic voltammetry.
Resumo:
A tyrosinase-based amperometric biosensor using a self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP) as an immobilization matrix was constructed. The 4-vinylpyridine component of PVA-g-PVP enhances the adherence to a glassy carbon electrode surface. The content of 4-vinylpyridine in this immobilization matrix plays a key role in retaining the activity of tyrosinase. A simple, milder method was adopted by simply syringing the copolymer-tyrosinase aqueous solution on to the electrode surface and allowing water to evaporate at 4 degrees C in a refrigerator. Several parameters, including copolymer composition; pH, applied potential and enzyme membrane composition, ware optimized. The enzyme membrane composition can be varied to obtain higher sensitivity or a wider linear detection range. The biosensor was used for the determination of phenol, p-cresol and catechol. The biosensor exhibited excellent reproducibility, stability and sensitive response and can be used in flow injection analysis. The biosensor showed an extended linear range in hydrophilic organic solvents and it can be used in monitoring organic reaction processes. The analytical performance demonstrated this immobilization matrix is suitable for the immobilization of tyrosinase.
Resumo:
The electrode reaction process of ascorbic (Vc) was studied by in-situ circular dichroic(CD) spectroelectrochemistry with a long optical path thin layer cell on glassy carbon(GC) electrode. The spectroelectrochemical data were analyzed by the double logarithmic method together with nonlinear regression. The results suggested that the mechanism of Ve in pH 7.0 phosphate buffer solution at GC electrode was a two-electron irreversible electrooxidation followed by adsorption of the oxidation product. That is a self-accelerated process. Some kinetic parameters at free and at adsorbed electrode surface, i.e, the formal potentials, E-0' = 0.09 V, E-a(0') = 0.26 +/- 0.02 V; the electron transfer coefficient and number of transfered electron, alpha n = 0.41, alpha(a)n = 0.07;the standard heterogeneous electron transfer rate constant, k(0) = 8.0 x 10(-5) cm.s(-1), k(a)(0) = 1.9 x 10(-4) cm.s(-1) and adsorption constant, beta = 102.6 were also estimated.
Resumo:
A novel functionalized inorganic-organic hybrid material with cation exchange property was prepared by sol-gel method. The H2O2 biosensor was fabricated by simply dipping the horseradish peroxidase-containing functionalized membrane modified electrode into Meldola's blue (MDB) solution. MDB was adsorbed and firmly immobilized within the membrane. The electrochemical behavior of MDB incorporated in the membrane was more reversible compared with that of the solution species and suitable as mediator for the horseradish peroxidase. The response time was less than 25 s. Linear range is up to 0.6 mM (COH. coeff. 0.9998) with detection Limit of 9 x 10(-7) M. High sensitivity of 75 nA mu M cm(-2) was obtained due to high MDB-loading. The biosensor exhibited a good stability. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In the present paper, the electrochemical behavior of ergosterol has been investigated by in situ circular dichroism (CD) spectroelectrochemistry with long path-length thin layer cell. E-0 (1.02V), alpha n(alpha) (0.302) of the electroxidation process of ergosterol were obtained from the CD spectroelectrochemical data. The mechanism of the electroxidation process of ergosterol is suggested.
Resumo:
Electrochemical redox behavior of noradrenaline in alkaline solution on a glassy carbon electrode has been investigated by in situ UV-vis and CD spectroelectrochemistry by using a long optical path thin-layer cell. The experimental data were processed by using a double logarithmic method of analysis together with nonlinear regression which confirmed that the first step in both the oxidation of noradrenaline and reduction of noradrenochrome is a two-electron irreversible process governed by an EE mechanism. The kinetic parameters of the electrode reactions, i.e., charge transfer coefficient and the number of electrons transferred, alpha(1)n(1) = 0.11 and alpha(2)n(2) = 0.23, formal potentials modified with kinetics, E-1(0') = 0.65 (+/- 0.01) V and E-2(0') = 0.72V and standard rate cnstants, k(1)(0) = 7.0(+/-0.5)x10(-5) cm s(-1), for the first and second steps in the oxidation process of noradrenaline, and similarly, alpha(1)n(1) = 0.33, alpha(2)n(2) = 0.58, E-1(0') = 0.37(+/-0.01) V, E-0' = -0.25 (+/-0.01) V and k(1)(0) approximate to k(2)(0) = 1.06 (+/-0.05)x10(-4) cm s(-1) for the first and second steps in the reduction process of noradrenochrome were also determined.
Resumo:
Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, the polypyrrole (PPy) film modified electrodes are used as an electroreleasing reservoir. The electrochemically controlled release of 5-fluorouracil (5-FU) from a PPy film modified electrode to aqueous electrolytes is studied by the in situ probe beam deflection (PBD) method combined with cyclic voltammetry (CV) and chronoamperometry (CA). The PBD results reveal that the release of 5-FU from PPy film depends on the electrochemical redox process of the PPy film electrode. The released amount is controlled by the reduction potential and is proportional to the thickness of the film. The exchange of 5-FU anions with Cl- on an open circuit is slow on the time scale of minutes, but the release of 5-FU anions can proceed quickly at -0.6 V (vs Ag/AgCl). The amount of released 5-FU decreases with the time that the PPy film is soaked in aqueous solution. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
At the self-assembled monolayer (SAM) of a thiol-functionalized viologen modified gold electrode, cytochrome c (cyt c) exhibits a quasi-reversible electrochemical reaction. The heterogeneous electron transfer rate constant of cyt c in 0.1 mol/L phosphate buffer solution(pH 6.96) is 0.164 cm.s(-1) at 500 mV/s. The adsorbed cyt c on the viologen SAM forms a closely packed monolayer, whose average electron transfer rate is 4.85 s(-1) in the scan range of 50 to 500 mV/s. These results suggest that the SAM of viologen-thiol is a relatively stable, ordered and well-behaved monolayer from an electrochemical standpoint and it promotes the electron transfer process of biomolecules on electrode surface well.